Design of Flow Adjusting Device in Diffuser of Open-Circuit Wind Tunnel with Low Speed Based on CFX

2015 ◽  
Vol 799-800 ◽  
pp. 640-644
Author(s):  
Xiao Yi Wang ◽  
Chong Gao ◽  
Fu Qiang Chen ◽  
Yu Hua Zhang ◽  
Zhi Zhen Qiu

The diffuser in wind tunnel plays a vital role to improve flow field quality. Many flow adjusting devices in diffuser were studied by lots of researchers in the world to inhibit flow separation. However, most of them were applied on closed-circuit wind tunnel with high speed. It is necessary to design appropriate flow adjusting device for diffuser in open-circuit wind tunnel with low speed which was increasingly used in aerodynamic experiment. The structure of a new open-circuit wind tunnel with low speed was firstly introduced in this paper. The flow adjusting device was designed, which was composed of three parts, namely contracting cone, air guide plate and screen. On the basis of analysis model for diffuser, the influences of contracting cone, air guide plate and screen on flow field quality were respectively given by CFX simulation that was using multiple reference frames and RNG k-ε turbulence model. Case study showed that the role of single part was limited, combined effect of three parts in flow adjusting device could greatly improve quality of flow field in diffuser. The study results mentioned above are useful for designing flow adjusting device in diffuser of practical open-circuit wind tunnel with low speed.

2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


2015 ◽  
Author(s):  
Ronaldo Menezes dos Santos Junior ◽  
André Luiz Amarante Mesquita ◽  
Miriam Lys Gemaque

2022 ◽  
Vol 1211 (1) ◽  
pp. 012009
Author(s):  
Nikolay Danilov ◽  
Sergey Tsyruk ◽  
Alexandr Timonin ◽  
Karam Sharafeddine

Abstract A proper choice of the design and operation algorithm of emergency control devices like high-speed bus transfer (HSBT) is only possible proceeding from a study and analysis of steady-state and transient processes in emergency modes of operation (short-circuit faults, power supply disconnection, or phase open-circuit fault). The numerical experiments for studying such modes that were carried out, using the Matlab Simulink software package, on the mathematical models of an industrial power supply system involving synchronous motors connected to it made it possible to synthesize a new differential HSBT pickup unit featuring a high-speed response to emergency events. In doing so, special attention was paid to an analysis of transient operation modes with the aim of minimizing the probability of false actuations. The obtained study results have found practical application in the HSBT devices installed at the facilities of PJSC MOSENERGO. The experience gained from the operation of a new device jointly with high-speed circuit breakers produced by the Tavrida-Elektrik state-owned corporation has demonstrated essential advantages in comparison with the conventional HSBT designs.


2019 ◽  
Vol 213 ◽  
pp. 02033
Author(s):  
Tomáš Jelínek ◽  
Erik Flídr ◽  
Martin Němec ◽  
Jan Šimák

A new test facility was built up as a part of a closed-loop transonic wind tunnel in VZLU´s High-speed Aerodynamics Department. The wind tunnel is driven by a twelve stage radial compressor and Mach and Reynolds numbers can be changed by the compressor speed and by the total pressure in the wind tunnel loop by a set of vacuum pumps, respectively. The facility consists of an axisymmetric subsonic nozzle with an exit diameter de = 100 mm. The subsonic nozzle is designed for regimes up to M = 1 at the nozzle outlet. At the nozzle inlet there is a set of a honeycomb and screens to ensure the flow stream laminar at the outlet of the nozzle. The subsonic nozzle can be supplemented with a transonic slotted nozzle or a supersonic rigid nozzle for transonic and supersonic outlet Mach numbers. The probe is fixed in a probe manipulator situated downstream of the nozzle and it ensures a set of two perpendicular angles in a wide range (±90°). The outlet flow field was measured through in several axial distances downstream the subsonic nozzle outlet. The total pressure and static pressure was measured in the centreline and the total pressure distribution in the vertical and horizontal plane was measured as well. Total pressure fluctuations in the nozzle centreline were detected by a FRAP probe. From the initial flow measurement in a wide range of Mach numbers the best location for probe calibration was chosen. The flow field was found to be suitable for probe calibration.


2015 ◽  
Author(s):  
Hong-yan Zhao ◽  
Peng-fei Zhang ◽  
Yun Ma ◽  
Jian-guo Ning

Author(s):  
Ralf Erdmann ◽  
Andreas Pätzold ◽  
Marcus Engert ◽  
Inken Peltzer ◽  
Wolfgang Nitsche

This paper gives an overview of drag reduction on aerofoils by means of active control of Tollmien–Schlichting (TS) waves. Wind-tunnel experiments at Mach numbers of up to M x =0.42 and model Reynolds numbers of up to Re c =2×10 6 , as well as in-flight experiments on a wing glove at Mach numbers of M <0.1 and at a Reynolds number of Re c =2.4×10 6 , are presented. Surface hot wires were used to detect the linearly growing TS waves in the transitional boundary layer. Different types of voice-coil- and piezo-driven membrane actuators, as well as active-wall actuators, located between the reference and error sensors, were demonstrated to be effective in introducing counter-waves into the boundary layer to cancel the travelling TS waves. A control algorithm based on the filtered- x least mean square (FxLMS) approach was employed for in-flight and high-speed wind-tunnel experiments. A model-predictive control algorithm was tested in low-speed experiments on an active-wall actuator system. For the in-flight experiments, a reduction of up to 12 dB (75% TS amplitude) was accomplished in the TS frequency range between 200 and 600 Hz. A significant reduction of up to 20 dB (90% TS amplitude) in the flow disturbance amplitude was achieved in high-speed wind-tunnel experiments in the fundamental TS frequency range between 3 and 8 kHz. A downstream shift of the laminar–turbulent transition of up to seven TS wavelengths is presented. The cascaded sensor–actuator arrangement given by Sturzebecher & Nitsche in 2003 for low-speed wind-tunnel experiments was able to shift the transition Δ x =240 mm (18%  x / c ) downstream by a TS amplitude reduction of 96 per cent (30 dB). By using an active-wall actuator, which is much shorter than the cascaded system, a transition delay of seven TS wavelengths (16 dB TS amplitude reduction) was reached.


Sign in / Sign up

Export Citation Format

Share Document