Preparation and Characterization of Cement-TiO2 Composites

2015 ◽  
Vol 804 ◽  
pp. 133-136
Author(s):  
Noosara Kaewgabkam ◽  
Nittaya Jaitanong ◽  
Suparut Narksitipan

Titanium dioxide (TiO2) is the most widely used photocatalyst because of its high photocatalytic activity and reasonably low cost. Moreover, TiO2 has strong chemical stability in a large variety of environmental conditions. The combination of TiO2 with cementatious materials has been widely investigated, and the effects of the TiO2 contents (10-40% by weight) were studied in this research. The crystalline structures and chemical compositions were analyzed using x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. Moreover, its microstructure was investigated by scanning electron microscopy (SEM). It was found that the intensity of CS and CH decreased with an increase in the TiO2 powder content. This was because when adding more TiO2 powder to the composite system, more water was needed to add to the hydration reaction.

2016 ◽  
Vol 872 ◽  
pp. 211-215 ◽  
Author(s):  
Pusit Pookmanee ◽  
Atit Wannawek ◽  
Sakchai Satienperakul ◽  
Ratchadapon Putharod ◽  
Nattapol Laorodphan ◽  
...  

This research studies compositions of diatomite, leonardite and pumice for utilization appropriate to the properties of materials. Chemical compositions of these materials were characterized by X–ray fluorescence spectrometry (XRF) and energy dispersive X–ray spectrometry (EDXS). The silica was major component of these materials. The morphology was investigated by scanning electron microscopy (SEM). Diatomite was cylindrical in shape, leonardite was sheet or flake in shape and pumicewas prismatic in shape. The structure was studied by X–ray diffraction (XRD). It was found that the mineral composition of diatomite, leonardite and pumice showed cristobalite low, quartz and anorthite, respectively. The functional groups were identified by Fourier transform infraredspectrometry (FTIR). The functional group of siloxane was obtained and dominated vibration in these materials. And the vibration of carboxylic, alcoholic and carbonyl groups were obtained in leonardite.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2160
Author(s):  
Alexander Bogdanov ◽  
Ekaterina Kaneva ◽  
Roman Shendrik

Elpidite belongs to a special group of microporous zirconosilicates, which are of great interest due to their capability to uptake various molecules and ions, e.g., some radioactive species, in their structural voids. The results of a combined electron probe microanalysis and single-crystal X-ray diffraction study of the crystals of elpidite from Burpala (Russia) and Khan-Bogdo (Mongolia) deposits are reported. Some differences in the chemical compositions are observed and substitution at several structural positions within the structure of the compounds are noted. Based on the obtained results, a detailed crystal–chemical characterization of the elpidites under study was carried out. Three different structure models of elpidite were simulated: Na2ZrSi6O15·3H2O (related to the structure of Russian elpidite), partly Ca-replaced Na1.5Ca0.25ZrSi6O15·2.75H2O (close to elpidite from Mongolia), and a hypothetical CaZrSi6O15·2H2O. The vibration spectra of the models were obtained and compared with the experimental one, taken from the literature. The strong influence of water molecule vibrations on the shape of IR spectra of studied structural models of elpidite is discussed in the paper.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


2021 ◽  
pp. 004051752110154
Author(s):  
Zhihui Qin ◽  
Shuyuan Zhao ◽  
Liu Liu ◽  
Zhaohe Shi ◽  
Longdi Cheng ◽  
...  

Degumming is the dominant method for insolating lignocellulosic fibers in textile applications. Traditional alkaline degumming (TAL), as a common method, requires a high-concentration alkali and has been a severe challenge to the environment. In the research reported here, the possibility of innovative jute degumming by organic solvents 1-2 propylene glycol and a combination of additive green oxygen (GO-OS) was studied. The results revealed that fibers could be extracted by this system (under condition of 0.9% GO-OS, 180°C, 120 min), and obtained fibers with higher breaking tenacity (7.1 cN/dtex), yield (65.7%), breaking elongation (2.87%) and residual gum (11.7%), which all meet the requirement of the relevant Chinese Textile National Standards. Notably, the required reaction time (120 min) of the GO-OS system was 180 min shorter than that of the TAL method. Furthermore, the modifications introduced by the degumming effect on physicochemical aspects were characterized and confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. This study provides a promising degumming method for separating jute lignocellulose without acid and alkali consumption.


2022 ◽  
Vol 321 ◽  
pp. 126326
Author(s):  
Gladis Aparecida Galindo Reisemberger de Souza ◽  
Ramón Sigifredo Cortés Paredes ◽  
Frieda Saicla Barros ◽  
Gustavo Bavaresco Sucharski ◽  
Sebastião Ribeiro Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document