Characterization of hydrofluoric acid treated Y–Ba–Cu–O oxides

1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.

1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


2007 ◽  
Vol 29-30 ◽  
pp. 91-94
Author(s):  
B.Y. Choi ◽  
J.K. Jeong ◽  
Y.B. Lim

Nitrogen implanted titanium alloys with enhanced wear resistance have been synthesized under the conditions of energy and N++N2 +ion dose in the range of 30keV to 120keV and 3×1017ions/cm2 to 1×1018ions/cm2, respectively. Auger electron spectroscopy and X-ray diffraction show that supersaturated titanium solid solution with the gradient nitrogen concentration and titanium nitride compounds are formed in the surface modified regions of the materials. Enhanced wear resistance of the nitrogen implanted titanium alloy at energy of 120keV and ion dose of 1×1018ions/cm2 has been showed and explained on the basis of observed microstructure including the formation of micropits on the wear track in the present study.


1991 ◽  
Vol 249 ◽  
Author(s):  
Youming Xiao ◽  
Beng Jit Tan ◽  
Steven L. Suib ◽  
Francis S. Galasso

ABSTRACTCoating of SiC (BP-SIGMA) fibers with alumina by a sol-gel process did not cause degradation even after heating to 1000°C in air for 24 h. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and scanning electron microscopy (SEM ) methods were used to study the coating fiber interface.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 230
Author(s):  
Pengcheng Ma ◽  
Hongying Yang ◽  
Zuochun Luan ◽  
Qifei Sun ◽  
Auwalu Ali ◽  
...  

Bacteria–mineral contact and noncontact leaching models coexist in the bioleaching process. In the present paper, dialysis bags were used to study the bioleaching process by separating the bacteria from the mineral, and the reasons for chalcopyrite surface passivation were discussed. The results show that the copper leaching efficiency of the bacteria–mineral contact model was higher than that of the bacteria–mineral noncontact model. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) were used to discover that the leaching process led to the formation of a sulfur film to inhibit the diffusion of reactive ions. In addition, the deposited jarosite on chalcopyrite surface was crystallized by the hydrolysis of the excess Fe3+ ions. The depositions passivated the chalcopyrite leaching process. The crystallized jarosite in the bacteria EPS layer belonged to bacteria–mineral contact leaching system, while that in the sulfur films belonged to the bacteria–mineral noncontact system.


Sign in / Sign up

Export Citation Format

Share Document