Fabrication of 2 wt% NiFe2O4/HAp Composite Ceramic for Future Heavy Metal Removal Applications

2015 ◽  
Vol 804 ◽  
pp. 291-294
Author(s):  
Pattarinee Klumdoung ◽  
Salakchit Pukjaroon ◽  
Piyapong Pankaew

In this study, 2 wt% NiFe2O4/HAp composite ceramic was fabricated by the solid state reaction method to form a composite with the future potentiality to remove heavy metals. HAp powders were synthesized by precipitation using Ca (NO3)2 as Ca source, (NH4)2HPO4 as the P source and ammonia as a pH adjuster. NiFe2O4 powders were prepared by mixing and milling NiO and Fe2O3 powders (using stoichiometry ratio) in ethanol and sequent dehydration and then calcination. 2 wt% of NiFe2O4 powders were milled with 98 wt% of HAp powders for 10 minutes before uniaxial pressing and sintering at 1200 °C for 3 hours to form 2 wt% NiFe2O4/HAp composite ceramic. The prepared ceramic was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). XRD result shown that 2 wt% NiFe2O4/HAp composite ceramic with only HAp and NiFe2O4 phases obtained. FT-IR results revealed vibration bands of standard HAp and indicated the interaction between ZnFe2O4 and HAp. For the SEM result, the morphology of the prepared ceramic revealed nanoand micro sized grains. These results could lead us to the development of a method for a NiFe2O4/HAp composite ceramic optimized for specific heavy metal removal applications.

2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2017 ◽  
Vol 126 (1B) ◽  
pp. 147
Author(s):  
Nguyen Thi Thuy

<p><strong>Abstract: </strong>LaFeO<sub>3</sub> system with doped Ti, Co, Cu was manufactured by solid state reaction method, it was sintered at 1250<sup>0</sup>C and 1290<sup>0</sup>C in 10 hours with a heating rate of 3<sup>0</sup>C/min. Using X-ray diffraction and Scanning Electron Microscope (SEM) to examine the structure, it reveals that samples are single-phase and orthogonal-perovskite structure describing by the Pnma space group, the unit cell volume of the samples increases when Ti, Co, Cu are doped to replace ion Fe<sup>+3</sup>. The size of particle increase while raising the temperature of sintering. Measuring the resistance which depends on temperature between the room temperature and 1000K, it can be seen that when doping Co, Cu with the nominal component La(Fe<sub>0,2</sub>Co<sub>0,2</sub>Ti<sub>0,6</sub>)O<sub>3</sub> and La(Fe<sub>0,4</sub>Cu<sub>0,1</sub>Ti<sub>0,5</sub>)O<sub>3 </sub>, the conductivity of samples increases respectively. Especially, the conductivity of Cu doped sample is higher than two other samples, and reach the highest conductivity at about 900<sup>0</sup>C, Seebeck coefficient S of La(Fe<sub>0.6</sub>Ti<sub>0.4</sub>)O<sub>3</sub> can be change from positive to negative at the temperature of around 700<sup>0</sup>C.</p>


2011 ◽  
Vol 8 (1) ◽  
pp. 97-100
Author(s):  
Manish Verma ◽  
N. P. Lalla ◽  
D. M. Phase ◽  
V. K. Ahire

Polycrystalline samples of La1.8Sr0.20Cu1-yMnyO4 (0≤y≤0.15) were synthesized by solid state reaction method. The phase purity was confirmed by powder X-ray diffraction. The scanning electron microscopy was done on the La1.8Sr0.20Cu1-yMnyO4 (0≤y≤0.15) samples. The superconductivity and Transition temperature were studied by four probe resistivity temperature method. The transition temperatures were measured nearly 37 k and were unchanged on Mn doping at Cu site in La1.8Sr0.20CuO4.


2007 ◽  
Vol 334-335 ◽  
pp. 1021-1024
Author(s):  
Y.J. Wu ◽  
H. Zhang ◽  
J.G. Wan ◽  
S.F. Zhao ◽  
J.M. Liu ◽  
...  

In this work, we report the magnetoelectric HoMnO3-BaTiO3 composites prepared by the solid-state reaction method. X-ray diffraction and scanning electron microscopy were used to characterize the phase composition and structures of the composites. The material/impedance analyzer was used to investigate the dielectric properties of the composites. It is shown that the composite consists of both ferroelectric ordering and magnetic ordering. The addition of BaTiO3 decreases the antiferromagnetic phase transformation temperature of the HoMnO3, indicating that there exists the coupling interaction between BaTiO3 and HoMnO3 phases.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Mourad Derbal ◽  
Lakhdar Guerbous ◽  
Ouadjaout Djamel ◽  
Chaminade Jean Pierre ◽  
Mohyddine Kadi-Hanifi

(, 0.5, 1, 5, and 10 at.%) polycrystalline powders blue phosphors were prepared via the classical solid-state reaction method. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation, and emission spectra were used to characterize phosphors. By analyzing the excitation and emission spectra of samples, the result indicates that there exists the energy transfer only from the group to the energy level of ion. On the other hand, the influence of the thulium concentration on the blue emission transition and and the emission of group are investigated.


2017 ◽  
Vol 883 ◽  
pp. 3-6
Author(s):  
Sadia Tasnim Mowri ◽  
Quazi Delowar Hossain ◽  
M.A. Gafur ◽  
Aninda Nafis Ahmed ◽  
Muhammad Shahriar Bashar

(Bi2O3Fe2O3)0.8(Nb2O5)0.2 was synthesized by solid state reaction method. (Bi2O3Fe2O3)0.8(Nb2O5)0.2 was made for the investigation of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Dielectric property. XRD pattern reveals that three phases were obtained with Bismuth Iron Niobium Oxide. SEM elicits that grain size increases with the enhancement of sintering temperature. Dielectric property decreases with the augmentation of frequency.


2014 ◽  
Vol 955-959 ◽  
pp. 120-126
Author(s):  
Ying Feng ◽  
Wei Huang ◽  
Chao Hao Hu ◽  
Wen Zhao ◽  
Pan Fei Jiao ◽  
...  

Ag-modified CaBiO2Cl photocatalysts were synthesized by the one-step solid state reaction method. The microstructure and morphology of catalysts were characterized by using X-ray diffraction, Scanning electron microscopy, and Energy dispersive X-ray detector (EDS) techniques. The photocatalytic activities of pure CaBiO2Cl and Ag-CaBiO2Cl catalysts were further evaluated by degrading methylene blue (MB) under visible-light irradiation. The measured UV-vis absorption spectra indicated that the degradation of Ag-modified CaBiO2Cl has been improved by about 12% in comparison with pure CaBiO2Cl. The enhanced photocatalytic activity in Ag-modified CaBiO2Cl can be ascribed to the better morphologies of the composites due to the Ag additive.


2011 ◽  
Vol 117-119 ◽  
pp. 1247-1249
Author(s):  
Yin Jie Wang ◽  
Ji Ping Liu ◽  
Ze Quan Liu ◽  
Xiao Bing Lu

Si-doped lithium zirconate Li2SixZr(1-x)O3(0≤x≤0.4) sorbents were prepared by a solid-state reaction method from nano-sized monoclinic ZrO2. The morphology phase, structure and adsorption properties of the prepared lithium zirconate were respectively determined by using scanning electron microscope (SEM) , X-ray diffraction (XRD) and thermogravimetric analyzer (TG).The results showed the CO2adsorption properties of material could be improved by doping suitable amount Si.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Erfan Handoko

<p>The synthesis of nanocrystalline BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub> with variations of x (x = 0, 1, 2, and 3) have been investigated. The formation of polycrystalline samples that the cationic of Co<sup>2+</sup> and Ti<sup>4+</sup> in Co-Ti substituted Fe in BaFe<sub>12</sub>O<sub>19</sub> ferrites structure were prepared by solid state reaction method. The crystal structure, microstructure, and magnetic properties were characterized using powder X-ray diffraction, scanning electron microscope (SEM) and permagraph meter, respectively. The results show that the nanocrystalline BaFe<sub>12-2x</sub>Co<sub>x</sub>Ti<sub>x</sub>O<sub>19</sub> has single phase with polycrystalline structure, the grain size decrease by doping, the coercivity (Hc) and saturation magnetization (Ms) decrease with increasing Co-Ti substitutions. </p>


Sign in / Sign up

Export Citation Format

Share Document