Effects of Different Types of Grinding Fluids on Grinding Force with a Semi-Empirical Based Model

2015 ◽  
Vol 809-810 ◽  
pp. 3-8 ◽  
Author(s):  
Guo Xu Yin ◽  
Ioan D. Marinescu ◽  
Michael Weismiller

In present paper, a semi-empirical grinding force model is developed combined with the achievements of previous researchers by composing effects of normal and tangential grinding forces in two main parts respectively: cutting force and sliding force. Final equations for the total normal and tangential force components is established. This model is used to predict the total normal and tangential force in the surface grinding. These force components were expressed in terms of the grinding process parameters. There are four unknown coefficients in each equation which can be determined by experiment results at specific conditions with the variations of grinding process parameters. An equation for sliding force is established with the effect of specific sliding energy in terms of the experimental parameters. The average contact pressure and friction coefficient are taken into account. Four different water-based grinding fluids were tested for different specific grinding conditions. Low viscosity grinding fluid can have better performance than the high viscosity one due to the higher useful flow in the grinding contact area. The calculated normal and tangential grinding results are compared with the experimental ones. The verifications show that deviations can be affected by the performance of the fluid at heavy grinding conditions due to the sliding friction inside of rolling friction. To have a better agreement with experiment data. Shallow grinding condition is chosen to obtain the modified model.

2013 ◽  
Vol 797 ◽  
pp. 123-128
Author(s):  
Ming He Liu ◽  
Xiu Ming Zhang ◽  
Shi Chao Xiu

In the low-speed grinding process, the force generated when the wheel grinding the workpiece is the result of sliding friction, plough and cutting. While in the actual study, the cutting process has attracted extensive attention. Impact effect to the entire grinding process on the contact is ignored so that the error exists between the calculation grinding force and the measured grinding force. Basing on the shock effect to the grinding process, the paper divides the contact area into impact area and cutting area. And the model of impact load generated from single grit is built. Moreover, the grinding force theoretical calculation model and total grinding force mathematical model is also constructed by analyzing the impact load affecting on the grinding force mechanism. Finally experimental study verifies the correctness of theoretical analysis.


1999 ◽  
Vol 121 (4) ◽  
pp. 632-637 ◽  
Author(s):  
Xun Chen ◽  
W. Brian Rowe ◽  
D. R. Allanson ◽  
B. Mills

The grinding power is often used as a parameter for monitoring the grinding process. The power may also be used to monitor the effects of dressing. Empirical models are required to guide the selection of the dressing and grinding conditions. In this paper, the effects of dressing conditions and grinding conditions on grinding force and grinding power are reviewed. The effects of grinding conditions and dressing conditions on grinding force and grinding power are related to the shape of the idealized chip thickness. It is found that the grinding force and grinding power can be related to the dressing operation by considering the effective density of the cutting edges on the wheel surface. The semi-empirical model developed in this paper can be used to predict the variation of the grinding power during the wheel redress life cycle. Therefore the model can be used to guide the selection of dressing and grinding conditions. The potential use of the model for adaptive control of the grinding process is also described.


Author(s):  
Yebing Tian ◽  
Linguang Li ◽  
Shuo Fan ◽  
Qianjian Guo ◽  
Xiang Cheng

In this work, a novel grinding method using a special abrasive tool was first proposed to achieve high tangential grinding force and low normal grinding force. The abrasive tool was developed with flexible composites to remove workpiece materials under “high-shear and low-pressure” grinding mode. The concept of the high-shear and low-pressure grinding method was introduced in detail. Grinding tests were carried out on a precision grinder with the developed abrasive tool for single crystal silicon specimens. The results showed that the grinding force ratio between tangential force and normal force for the proposed grinding method was ranged between 0.9 and 1.3, which was three times larger than that of the conventional grinding method. It was verified that the developed abrasive tool possessed the grinding characteristics of high tangential grinding force and low normal grinding force. After grinding of silicon specimens for 120 min, the value of surface roughness decreased from 429.20 to 32.91 nm under the selected grinding conditions. The surface quality of the silicon specimens was greatly improved after grinding.


1971 ◽  
Vol 93 (4) ◽  
pp. 1120-1128 ◽  
Author(s):  
S. Malkin ◽  
N. H. Cook

An investigation of attritious and fracture wear of grinding wheels in precision grinding is described in a two paper sequence. Attritious wear, the subject of this first paper, refers to the dulling of the abrasive grain due to rubbing against the workpiece surface. The amount of dulling, measured by the area of the wear flats on the surface of the wheel, is found to be directly related to the grinding forces. In general, both the vertical and horizontal grinding force components increase linearly with the wear flat area. This is explained by considering the grinding force as the sum of a cutting force due to chip formation and a sliding force due to rubbing between the wear flats and workpiece. Related studies of wheel dressing, surface finish, and workpiece burn are also presented.


1987 ◽  
Vol 109 (4) ◽  
pp. 306-313 ◽  
Author(s):  
M. Younis ◽  
M. M. Sadek ◽  
T. El-Wardani

A theoretical model has been developed for representing the grinding forces. This is based on the fact that the chip formation during grinding consists of three states: ploughing, cutting, and rubbing. Expressions for the total normal and tangential force components during these three stages were established. These components were expressed in terms of the chip thickness coefficient, the friction coefficient between the grit tip area and the workpiece, the stress coefficient arising during ploughing and, finally, the loading coefficient. The latter is expressed as an exponential in time. All these coefficients were determined experimentally by performing normal grinding tests at specified configurations. During these tests the forces were measured simultaneously with the loaded area on the grinding wheel during the process of grinding. The loaded area on the wheel surface was measured by a new technique using fiber-optics. This is based on the measurement of the reflectivity of the loaded particles. This system was calibrated by high magnification photographs taken of the surface texture. The predicted normal and tangential forces during the grinding process were compared with those experimentally obtained during the grinding tests mentioned earlier, showing reasonable agreement, both quantitatively and qualitatively.


2012 ◽  
Vol 500 ◽  
pp. 287-294 ◽  
Author(s):  
Peng Yan ◽  
Jian Hua Zhang ◽  
Guo Sheng Su

In the ultrasonic vibration assisted grinding and EDM, grinding and pulse discharge machining are favorable conditions for each other, can significantly improve the processing efficiency by adjusting the processing parameters, and get high-quality machined surface. The grinding force is an important parameter in characterizing the grinding process, which is the g the main object of study in grinding process. The interaction of ultrasonic vibration, grinding and EDM is investigated. From the view of material removal volume, the volume of removal by EMD is calculated. Then the volume by grinding is gotten. The grinding force model of combined machining is established. The influence machining parameters on grinding force is studied, which is helpful for the detection and control of grinding force.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 368 ◽  
Author(s):  
Zhipeng Li ◽  
Feihu Zhang ◽  
Xichun Luo ◽  
Xiaoguang Guo ◽  
Yukui Cai ◽  
...  

The ability to predict the grinding force for hard and brittle materials is important to optimize and control the grinding process. However, it is a difficult task to establish a comprehensive grinding force model that takes into account the brittle fracture, grinding conditions, and random distribution of the grinding wheel topography. Therefore, this study developed a new grinding force model for micro-grinding of reaction-bonded silicon carbide (RB-SiC) ceramics. First, the grinding force components and grinding trajectory were analysed based on the critical depth of rubbing, ploughing, and brittle fracture. Afterwards, the corresponding individual grain force were established and the total grinding force was derived through incorporating the single grain force with dynamic cutting grains. Finally, a series of calibration and validation experiments were conducted to obtain the empirical coefficient and verify the accuracy of the model. It was found that ploughing and fracture were the dominate removal modes, which illustrate that the force components decomposed are correct. Furthermore, the values predicted according to the proposed model are consistent with the experimental data, with the average deviation of 6.793% and 8.926% for the normal and tangential force, respectively. This suggests that the proposed model is acceptable and can be used to simulate the grinding force for RB-SiC ceramics in practice.


2000 ◽  
Vol 123 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Xipeng Xu ◽  
Yuan Li ◽  
Stephen Malkin

An investigation is reported of the forces and energy in circular sawing and grinding of gray granite. Measurements were made of the forces and power over a wide range of sawing and grinding conditions. Calculated tangential force components were found to be much different than the measured horizontal force components for sawing, but the two forces were almost identical for grinding. The location of the resultant force was proportionally further away from the bottom of the cutting zone with longer contact lengths. For sawing, the normal force per grain was nearly proportional to the calculated undeformed chip thickness. The G-ratios at different sawing rates reached a maximum value at the same intermediate undeformed chip thickness, which was attributed to a transition in the diamond wear mechanism from attrition to fracture at a critical normal force per grain. SEM observations indicated material removal mainly by brittle fracture, with some evidence of ductile plowing especially for grinding and to a lesser extent for sawing. The corresponding fracture energy was estimated to constitute a negligible portion of the total energy expenditure. About 30 percent of the sawing energy might be due to the interaction of the swarf with the applied fluid and bond matrix. Most of the energy for sawing and grinding is attributed to ductile plowing. Analogous to recent studies on grinding of ceramics and glass, the power per unit width was found to increase linearly with the generation of plowed surface area per unit width.


Sign in / Sign up

Export Citation Format

Share Document