Considerations Regarding Validation through Simulation of Some Board System Information’s for Powertrain Performance Optimization

2016 ◽  
Vol 822 ◽  
pp. 346-353
Author(s):  
Ilie Dumitru ◽  
Matei Vînătoru ◽  
Dragos Tutunea ◽  
Alexandru Dima

The authors present in this paper the opportunities offered by the use of software platforms (MULTISIM) in the validation of informational systems for optimizing economical consumption. So after some research (based on identification methodology system type) a physical-mathematical model can be developed that offers the possibility to optimize fuel consumption in the economy pole depending on specific correlations of operating regimes. Resulted relationships allow designing of information systems by proposing solutions which acquire information on movement speed, engine RPM in load (by determining the actual torque through correlations of exhaust gas temperature, moment and torque).Having these relationships we can design, for example, system version with discrete components or with digital system for surveillance engine operation.

2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Gong Chen

Cylinder-exhaust-gas temperature (Texh) of a turbocharged compression-ignition engine indicates the levels of engine thermal loading on cylinder and exhaust components, thermal efficiency performance, and engine exhaust emissions. In consideration that Texh is affected by engine air inlet condition that primarily includes inlet air temperature (Ti) and pressure (pi), this paper studies the variation (ΔTexh) of Texh over varying the engine inlet air parameters of compression-ignition engines. The study is to understand ΔTexh with appropriate relations between the inlet parameters and Texh being identified and simply modeled. The regarded effects on Texh and ΔTexh for both naturally aspirated and turbocharged engines of this type are analyzed and predicted. The results indicate that Texh increases as Ti increases or pi decreases. The rate of variation in ΔTexh over varying Ti or pressure pi is smaller in a turbocharged engine than that in a naturally aspirated engine, as reflected from the model and results of the analysis. The results also indicate, for instance, Texh would increase approximately by ∼2 °C as Ti increases by 1 °C or increase by ∼35 °C as pi decreases by 10−2 MPa, as predicted for a typical high-power turbocharged diesel engine operating at a typical full-load condition. The design and operating parameters significant in influencing ΔTexh along with varying Ti or pi are studied in addition. These include the degree of engine cylinder compression, the level of intake manifold air temperature, the magnitude of intake air boost, and the quantity of cycle combustion thermal input. As those parameters change, the rate of variation in Texh varies. For instance, the results indicate that the rate of ΔTexh versus the inlet air parameters would increase as the quantity of cycle combustion thermal input becomes higher. With the understanding of ΔTexh, the engine output performances of thermal loading, efficiency, and exhaust emissions, concerning engine operation at variable ambient temperature or pressure, can be understood and evaluated for the purpose of engine analysis, design, and optimization.


2018 ◽  
Vol 2 ◽  
pp. CKB8N6 ◽  
Author(s):  
Andreas Kellersmann ◽  
Gerald Reitz ◽  
Jens Friedrichs

Performance degradation due to wear of high pressure compressors (HPC) is a major concern in aero-engine operation and maintenance. Among other effects especially erosion of airfoils leads to changed aerodynamic behavior and therefore to deterioration. These affects engine performance parameter like thrust specific fuel consumption (TSFC) and exhaust gas temperature (EGT). Reaching EGT-limit, the engine typically has to be overhauled during a shop visit to restore safety standards and performance. During state of the art shop visits, engines are repaired based on EGT-specifications. To further enhance the maintenance, tailored repairs for each jet engine based on engine history and operation conditions are necessary to take TSFC into account. To ensure such an effective maintenance, the aerodynamic behavior of deteriorated and repaired airfoils is the key factors. Therefore, geometric properties with high influence on aerodynamic performance have to be known. For blisks (BLade-Integrated-diSK) the approach of tailored maintenance will be even more complicated because the airfoil arrangement cannot be changed or individual airfoils cannot be replaced. Thus, the effects of coupled misshaped airfoils have a high significance. This study will present a Design of Experiments (DoE) for circumferential coupled HPC-airfoils to identify the geometric properties which lead to a reduction of performance. To focus on geometric variations, quasi3D (Q3D) simulations are taken out. Based on a sensitivity analysis, the thickness related parameters, the stagger angle as well as the max. profile camber thickness are identified as the most important parameters which are influencing adjacent airfoils and reduce the aerodynamic performance.


2015 ◽  
Vol 22 (3) ◽  
pp. 90-98 ◽  
Author(s):  
Jerzy Kowalski

Abstract Presented paper shows the results of the laboratory tests on the relationship between throttling of both air intake duct and exhaust gas duct and a gaseous emission from the marine engine. The object of research is a laboratory, four-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests over 50 parameters of the engine were measured with its technical condition recognized as a „working properly” and with simulated leakage of both air intake valve and exhaust gas valve on the second cylinder. The results of this laboratory research confirm that the leakage of cylinder valves causes no significant changes of the thermodynamic parameters of the engine. Simulated leakages through the inlet and exhaust valve caused a significant increase in fuel consumption of the engine. Valve leakages cause an increase of the exhaust gas temperature behind the cylinder with leakage and behind other cylinders. The exhaust gas temperature increase is relatively small and clearly visible only at low loads of the engine. The increase of the temperature and pressure of the charging air behind the intercooler were observed too. Charging air temperature is significantly higher during the engine operation with inlet valve leakage. The study results show significant increases of the CO, NOx and CO2 emission for all the mentioned malfunctions. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of the air intake duct and the exhaust gas duct of the marine engine.


Author(s):  
Gong Chen

Cylinder-exhaust-gas temperature (Texh) of a turbocharged compression-ignition engine indicates the levels of engine thermal loading on cylinder and exhaust components, thermal efficiency performance, and engine exhaust emissions. In consideration that Texh is affected by engine air inlet condition that primarily includes inlet air temperature (Ti) and pressure (pi), this paper studies the variation (ΔTexh) of Texh over varying the engine inlet air parameters of compression-ignition engines. The study is to understand ΔTexh with appropriate relations between the inlet parameters and Texh identified and simply modeled. The regarded effects on Texh and ΔTexh for turbocharged engines of this type are analyzed and predicted. The results indicate that Texh generally increases as Ti increases or pi decreases. For example, Texh would increase by ∼2 °C as Ti increases by 1 °C or increase by ∼35 °C as pi decreases by 10−2 MPa, as predicted for a typical high-power turbocharged diesel engine. The design and operating parameters significant in influencing ΔTexh along with varying Ti or pi are also studied. These include the degree of engine cylinder compression, the level of intake manifold air temperature, the magnitude of intake air boost, and the quantity of cycle combustion thermal input. As those change, the rate of variation in Texh varies. For instance, the results indicate that the rate of ΔTexh versus the inlet air parameters would increase as the quantity of cycle combustion thermal input becomes higher. With the understanding of ΔTexh, the engine output performances of thermal loading, efficiency, and exhaust emissions, concerning engine operation at variable ambient temperature or pressure, can be understood and evaluated for the purpose of engine analysis, design and optimization.


2021 ◽  
Vol 28 (4) ◽  
pp. 97-106
Author(s):  
Patrycja Puzdrowska

Abstract In this paper, attention was paid to the problem of low controllability of marine medium- and high-speed engines during operation, which significantly limits the parametric diagnosis. The measurement of quickly changing temperature of engine exhaust gas was proposed, the courses of which can be a source of diagnostic information. The F statistic of the Fisher-Snedecor distribution was chosen as a statistical tool. Laboratory tests were carried out on the bench of a Farymann Diesel engine. The tests consisted of introducing the real changes in the constructional structure of the considered functional systems of the engine. Three changed parameters for the structure were reviewed: the active cross-sectional area of the inlet air channel, injector opening pressure and compression ratio. Based on the recorded plots of the quick-changing temperatures of the exhaust gases, three diagnostic measures were defined and subjected to statistical tests. The following data were averaged over one cycle for a 4-stroke piston engine operation, (1) the peak-to-peak value of the exhaust gas temperature, (2) the specific enthalpy of the exhaust gas, and (3) the rate of increase and decrease in the values for the quick-changing exhaust gas temperature. In this paper will present results of the first stage of the elimination study: the one-factor statistical analysis (randomised complete plan). The next part will present the results of the second stage of studies: two-factor analysis (block randomised plan), where the significance of the effect of changing the values of the structure parameters on the diagnostic measures was analysed in the background of a variable engine load.


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


2012 ◽  
Vol 622-623 ◽  
pp. 1162-1167
Author(s):  
Han Fei Tuo

In this study, energetic based fluid selection for a solid oxide fuel cell-organic rankine combined power system is investigated. 9 dry organic fluids with varied critical temperatures are chosen and their corresponding ORC cycle performances are evaluated at different turbine inlet temperatures and exhaust gas temperature (waste heat source) from the upper cycle. It is found that actual ORC cycle efficiency for each fluid strongly depends on the waste heat recovery performance of the heat recovery vapor generator. Exhaust gas temperature determines the optimal fluid which yields the highest efficiency.


Sign in / Sign up

Export Citation Format

Share Document