Evaluation of the Behavior of Hydrotalcite Like-Materials for CO2 Capture

2016 ◽  
Vol 830 ◽  
pp. 3-10 ◽  
Author(s):  
Dantiele W.S. Albuquerque ◽  
Elisângela S. Costa ◽  
Jussara L. de Miranda ◽  
Rosana Drumond Gonçalves ◽  
Luiza Cristina de Moura

Several compounds are being investigated for CO2 capture, besides alkolamines, including solid materials as activated charcoal, zeolites, metal organic frameworks, metal oxides and hydrotalcites. Hydrotalcites, also called layered double hydroxides (LDHs), present some characteristics that are very interesting for CO2 capture, including their speed to achieve equilibrium and their high regeneration. These compounds can be represented by the general formula [M1-x2+Mx3+(OH)2]x+ [(An-)x/n.yH2O]x, where M2+ and M3+ are divalent metals and trivalent cations, respectively, and An- is an anion of valency n which occupies the interlayer region, and maintains electrical neutrality of these materials. In the present work, we have synthesized specific LDHs, thermally modified for CO2 sorption. LDH’s were synthesized intercalated with carbonate anions employing the heterogeneous precipitation method, also known as co precipitation method. After LDH's calcination at different temperatures, the formation of oxides was observed with different surface areas and therefore a varied adsorption capacity. The products were characterized by X-ray diffraction, infrared absorption spectroscopy and thermo gravimetric analysis. The maximum efficiency of CO2 adsorption was observed at reduced pressure with the calcined sample of LDH-CO3, Mg2Al which indicates that the material maintained stable and with a high crystallinity. These properties presented for LDH-CO3, Mg2Al synthesized in this work indicate that these materials can be good and also cheap candidates for CO2 capture.

2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


2011 ◽  
Vol 197-198 ◽  
pp. 1049-1052
Author(s):  
Yuan Sun ◽  
Xiu Juan Zhao ◽  
Guo Jun Li ◽  
Rui Ming Ren

The olivine-type LiFePO4powder was prepared by a chemical method using the synthesized FePO41.78H2O, LiOH, citric acid and PEG as raw materials. The synthesized FePO41.78H2O precursor powder was obtained by co-precipitation method. LiFePO4powder was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC). The results showed that the calcined LiFePO4was in a single phase when fabricated by using the synthesized FePO41.78H2O powder at pH of 3.5 in argon atmosphere.


2019 ◽  
Vol 891 ◽  
pp. 206-213
Author(s):  
Jaruwan Kanthachan ◽  
Sukum Eitssayeam ◽  
Sitthi Duangphet ◽  
Uraiwan Intatha ◽  
Wilaiwan Leenakul ◽  
...  

Lithium Nickel Manganese Cobalt Oxide (LiNi0.75Mn0.15Co0.10O2: NMC) is become interested materials for lithium battery applications due to high specific energy and low cost. The pure phase and well-ordered layered structure has been synthesized by co-precipitation method. In this study, the Nickel-rich LiNi0.75Mn0.15Co0.10O2 positive electrode powder was prepared using co-precipitation method. The influence of synthesis parameters such as calcination temperature, time and amount of water for rinse a NaOH and NH4OH were studied. Then, phase formation and structure were studied by X-ray Powder Diffraction (XRD). The morphological changes is also confirmed by scanning electron microscope (SEM). A checking weight loss by thermo gravimetric Analysis (TGA). Finally, the optimum parameter to prepare highest pure NMC powder are rinse suddenly until pH 7 and calcination only single1 step.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1712
Author(s):  
Appusamy Muthukrishnaraj ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
Semmedu Selvaraj Kalaivani ◽  
Ayyar Manikandan ◽  
...  

Towards the utilization of Cu2O nanomaterial for the degradation of industrial dye pollutants such as methylene blue and methyl orange, the graphene-incorporated Cu2O nanocomposites (GCC) were developed via a precipitation method. Using Hummers method, the grapheme oxide (GO) was initially synthesized. The varying weight percentages (1–4 wt %) of GO was incorporated along with the precipitation of Cu2O catalyst. Various characterization techniques such as Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), UV–visible diffused reflectance (UV-DRS), Raman spectroscopy, thermo gravimetric analysis (TGA), energy-dispersive X-ray analysis (EDX), and electro chemical impedance (EIS) were followed for characterization. The cabbage-like morphology of the developed Cu2O and its composites were ascertained from field-emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM). In addition, the growth mechanism was also proposed. The results infer that 2 wt % GO-incorporated Cu2O composites shows the highest value of degradation efficiency (97.9% and 96.1%) for MB and MO at 160 and 220 min, respectively. Further, its catalytic performance over visible region (red shift) was also enhanced to an appreciable extent, when compared with that of other samples.


2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650347
Author(s):  
Amarjeet ◽  
Vinod Kumar

[Formula: see text] ([Formula: see text] = 0.1, 0.3 and 0.5) nanoparticles were prepared by chemical co-precipitation method. The developed nanoparticles were characterized for structural properties by powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Peak position in the X-ray diffraction pattern confirmed the single spinel phase of the developed particles. Infrared (IR) spectroscopy in mid-IR range showed the presence of characteristic absorption bands corresponding to octahedral and tetrahedral bonds in the spinel structure of prepared samples. Thermo-gravimetric analysis (TGA) measurements showed a considerable weight loss in the developed samples above 700[Formula: see text]C. Frequency dependence of the electrical properties of the developed material pellets was studied in the frequency range of 1 kHz–5 MHz. Temperature dependence of the dielectric constant of [Formula: see text] was studied at different temperatures, i.e. at 425, 450 and 475 K, in the frequency range of 1 kHz–5 MHz. It was found that the electrical conductivity decreases with increasing Cu[Formula: see text] ion content while it increases with the increase in temperature.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 750 ◽  
Author(s):  
Ali M. A. Al-Najar ◽  
Faris A. J. Al-Doghachi ◽  
Ali A. A. Al-Riyahee ◽  
Yun Hin Taufiq-Yap

Pt,Pd,Ni/MgO, Pt,Pd,Ni/Mg0.97La3+0.03O, Pt,Pd,Ni/Mg0.93La3+0.07O, and Pt,Pd,Ni/Mg0.85La3+0.15O (1% of each of the Ni, Pd, and Pt) catalysts were prepared by a surfactant-assisted co-precipitation method. Samples were characterized by the XRD, XPS, XRF, FT-IR, H2-TPR, TEM, the Brunauer–Emmett–Teller (BET) method, and TGA and were tested for the dry reforming of methane (DRM). TEM and thermal gravimetric analysis (TGA) methods were used to analyze the carbon deposition on spent catalysts after 200 h at 900 °C. At a temperature of 900 °C and a 1:1 CH4:CO2 ratio, the tri-metallic Pt,Pd,Ni/Mg0.85La3+0.15O catalyst with a lanthanum promoter showed a higher conversion of CH4 (85.01%) and CO2 (98.97%) compared to the Ni,Pd,Pt/MgO catalysts in the whole temperature range. The selectivity of H2/CO decreased in the following order: Pt,Pd,Ni/Mg0.85La3+0.15O > Pt,Pd,Ni/Mg0.93La3+0.07O > Pt,Pd,Ni/Mg0.97La3+0.03O > Ni,Pd,Pt/MgO. The results indicated that among the catalysts, the Pt,Pd,Ni/Mg0.85La23+0.15O catalyst exhibited the highest activity, making it the most suitable for the dry reforming of methane reaction.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 793
Author(s):  
Fahad Al-Mubaddel ◽  
Samsudeen Kasim ◽  
Ahmed A. Ibrahim ◽  
Abdulrhman S. Al-Awadi ◽  
Anis H. Fakeeha ◽  
...  

An environmentally-benign way of producing hydrogen is methane decomposition. This study focused on methane decomposition using Fe and Fe-Ni catalysts, which were dispersed over different supports by the wet-impregnation method. We observed the effect of modifying ZrO2 with La2O3 and WO3 in terms of H2 yield and carbon deposits. The modification led to a higher H2 yield in all cases and WO3-modified support gave the highest yield of about 90% and was stable throughout the reaction period. The reaction conditions were at 1 atm, 800 °C, and 4000 mL(hgcat)−1 space velocity. Adding Ni to Fe/x-ZrO2 gave a higher H2 yield and stability for ZrO2 and La2O3 + ZrO2-supported catalysts whose prior performances and stabilities were very poor. Catalyst samples were analyzed by characterization techniques like X-ray diffraction (XRD), nitrogen physisorption, temperature-programmed reduction (TPR), thermo-gravimetric analysis (TGA), and Raman spectroscopy. The phases of iron and the supports were identified using XRD while the BET revealed a significant decrease in the specific surface areas of fresh catalysts relative to supports. A progressive change in Fe’s oxidation state from Fe3+ to Fe0 was observed from the H2-TPR results. The carbon deposits on Fe/ZrO2 and Fe/La2O3 + ZrO2 are mainly amorphous, while Fe/WO3 + ZrO2 and Fe-Ni/x-ZrO2 are characterized by graphitic carbon.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 816
Author(s):  
Sabrina Polierer ◽  
David Guse ◽  
Stefan Wild ◽  
Karla Herrera Delgado ◽  
Thomas N. Otto ◽  
...  

The manufacturing of technical catalysts generally involves a sequence of different process steps, of which co-precipitation is one of the most important. In this study, we investigate how continuous co-precipitation influences the properties of Cu/ZnO/ZrO2 (CZZ) catalysts and their application in the direct synthesis of dimethyl ether (DME) from CO2/CO/H2 feeds. We compare material characteristics investigated by means of XRF, XRD, N2 physisorption, H2-TPR, N2O-RFC, TEM and EDXS as well as the catalytic properties to those of CZZ catalysts prepared by a semi-batch co-precipitation method. Ultra-fast mixing in continuous co-precipitation results in high BET and copper surface areas as well as in improved metal dispersion. DME synthesis performed in combination with a ferrierite-type co-catalyst shows correspondingly improved productivity for CZZ catalysts prepared by the continuous co-precipitation method, using CO2-rich as well as CO-rich syngas feeds. Our continuous co-precipitation approach allows for improved material homogeneity due to faster and more homogeneous solid formation. The so-called “chemical memory” stamped during initial co-precipitation is kept through all process steps and is reflected in the final catalytic properties. Furthermore, our continuous co-precipitation approach may be easily scaled-up to industrial production rates by numbering-up. Hence, we believe that our approach represents a promising contribution to improve catalysts for direct DME synthesis.


2015 ◽  
Vol 820 ◽  
pp. 335-340 ◽  
Author(s):  
Flávia R.O. Silva ◽  
Nelson B. de Lima ◽  
Deiby S. Gouveia ◽  
Nildemar A.M. Ferreira ◽  
Valter Ussui ◽  
...  

Hydroxyapatite (HA) doped with europium (HAEu) offers the advantage of making the hydroxyapatite a fluorescent biomarker, allowing their imaging through emissionin vivoandin vitrotests. Several authors had been based their studies about europium site occupation (CaI and CaII) in hydroxyapatite by the lanthanide ion luminescence, verifying the influence of the method of synthesis and concentration of the dopant ion. In this study HA nanoparticles doped with 1.4 mol% of trivalent europium were synthesized by co-precipitation method and thermal treated at different temperatures (600°C and 1200°C). A careful evaluation of the influence of the excitation wavelength of europium luminescence in the HAEu was performed and it has been verified that both the characteristics transitions of europium, at CaI and CaII sites, and the luminescent intensity are dependent on the excitation wavelength. The non-observance of this fact can lead to erroneous conclusions about the site occupation of europium in hydroxyapatites.


2009 ◽  
Vol 67 ◽  
pp. 203-208 ◽  
Author(s):  
Sachin Tyagi ◽  
Ramesh Chandra Agarwala ◽  
Vijaya Agarwala

Nanocrystalline strontium hexaferrite (SrFe12O19) and barium hexaferrite (BaFe12O19) powders were synthesized by co-precipitation method. The ‘as synthesized’ powders were heat treated (HT) at different temperatures ranging from 800 to 1200°C at a heating rate of 30°C /min in nitrogen atmosphere. Decomposition behaviour and the phases associated therein are investigated by thermal analysis (DTA/DTG/TG) and X-ray diffraction (XRD). Formations of ultrafine particles have been confirmed through field emission scanning electron microscop (FESEM). The superparamagnetic behavior of both, barium and strontium hexaferrite is confirmed by vibrating sample magnetometer (VSM). The increase in saturation magnetization from 1.94 to 31.05 emu/gm in case of barium hexaferrite and from 2.44 to 43.38 emu/gm for strontium hexaferrite is observed with HT temperatures. The changes in coercivity and remanence with HT temperatures for both the ferrites are analysed.


Sign in / Sign up

Export Citation Format

Share Document