Experimental Study on the Effect of Recycled Aggregate and GGBS on Flexural Behaviour of Reinforced Concrete Beam

2016 ◽  
Vol 857 ◽  
pp. 101-106
Author(s):  
P.R. Deepa ◽  
Joy Anup

Globally, the concrete industry consumes large quantities of natural resources, which are becoming insufficient to meet the increasing demands. Cement and aggregates are major constituents of concrete. Utilisation of waste materials in concrete instead of raw materials reduces environmental pollution. Ground-granulated blast-furnace slag (GGBS) is a by-product of steel industry. It has cementatious property. Recycled aggregates are obtained from demolishing waste. By using recycled concrete aggregate and GGBS in concrete we can reduce environmental problem to some extent. This experimental study evaluate the effective utilisation of GGBS and recycled aggregate in concrete. In this study GGBS is used as partial replacement for cement and recycled aggregate as partial replacement for coarse aggregate.

2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


2012 ◽  
Vol 193-194 ◽  
pp. 1371-1375
Author(s):  
Yong San Cheng ◽  
Ke Qiang Yu ◽  
Shuang Xi Wang

In order to better understand the recycled concrete aggregate, it is essential to investigate the different mixture ratio in it. For determining the better mixture ratio of recycled concrete aggregate, the experimental investigation was conducted by making use of recycled concrete aggregate of different ratio instead of small stones in concrete, while maintaining the proportion of other raw materials of concrete unchanged. Its mechanical properties were also investigated. It is found that the better materials proportion of recycled concrete is that sand: recycled aggregate: water= 1: 1.8 : 2.1: 0.55.


Author(s):  
Suhail Mushtaq Khan

Recycled aggregates are those crushed cement concrete or asphalt pavement which comes out from the construction debris which is reused in construction. They are made from the reprocessing of materials which have been used in previous constructions. This paper discusses about the study of properties of recycled aggregates from the sources which has already been published. The results are that 100% replacement of natural aggregate by recycled concrete aggregate effect on chloride ions resistance, it plays negative effects on durability of recycled concrete aggregates, and addition of fiber in recycled aggregate concrete mixture gave more effective in the performance of concrete. On experimental study of recycled aggregate, compressive, flexural and split tensile strength of the recycled aggregate were found to be lower than that of the natural aggregate. Use of recycled aggregate in a new concrete production is still limited. Recommendation of introduction of recycled aggregates standard is required for the materials to be used successfully in future. Gaps in literature reviews are also included in this paper.


2020 ◽  
Vol 15 (2) ◽  
pp. 49-54
Author(s):  
Jozef Junák ◽  
Natália Junáková

AbstractThe introductory part of the paper is devoted to the classification of aggregates according to various criteria, one of them is the geographical origin of aggregates. From the point of view of the circular economy, the use of recycled aggregates comes to the fore, mainly from the ecological point of view but also from the economic point of view.The paper summarizes the results of research focused on the variation of the amount of 2 Recycled concrete aggregate fractions in concrete, followed by an evaluation of the effect of the presence of recycled material in the mixture on the selected property, specifically compressive strength. The highest compressive strength 34.7 MPa after 28 days hardening reached sample containing 100% recycled fraction 4/8 mm, and 60% recycled fraction 8/16 mm. This value is only slightly different from the compressive strength of the reference sample (34.4 MPa).


2021 ◽  
Vol 6 (11) ◽  
pp. 155
Author(s):  
Natividad Garcia-Troncoso ◽  
Bowen Xu ◽  
Wilhenn Probst-Pesantez

Recycling of construction and demolition waste is a central point of discussion throughout the world. The application of recycled concrete as partial replacement of mineral aggregates in concrete mixes is one of the alternatives in the reduction of pollution and savings in carbon emissions. The combined influence of the recycled crushed concrete, lime, and natural pozzolana on the mechanical and sustainable properties of concrete materials is firstly proposed in this study. In this research, unconventional construction materials are employed to produce concrete: the recycled crushed concrete is used as coarse aggregate, while lime and natural pozzolana are used as a partial replacement for cement. Substitutions of 10%, 20%, 50% of gravel are made with recycled aggregates, and 2%, 5%, 10% of cement with lime and natural pozzolan. Tests on the fresh and hardened properties, destructive (compressive strength) and non-destructive tests (sclerometer rebound and ultrasound) of mixtures are carried out. It is shown that the use of recycled materials can provide an increase in compressive strength of up to 34% with respect to conventional concrete. Life cycle cost and sustainability assessments indicate that concrete materials incorporating recycled aggregate possess good economic and environmental impacts.


Author(s):  
Oluwarotimi Michael Olofinnade ◽  
Isaac T. Oyawoye

Utilization of concrete wastes as aggregate in conventional concrete is regarded as a promising way of achieving sustainability within the built-up environment. This study investigated the performance of high strength concrete produced using recycled aggregate (RCA) with the addition of calcined clay in the concrete mixes. The recycled aggregate was sourced from concrete rubbles and treated by soaking in water, while calcined clay was sourced from the pilot pozzolana plant of the Nigerian Building and Road Research Institute (NBRRI). The recycled concrete aggregates were used as a replacement for coarse aggregate at levels of 0, 20, 40, 60, 80 and 100%, using a mix ratio of 1:1:2 at a constant water-binder ratio of 0.25. Superplasticizer was added to ensure the workability of the mixes. The calcined clay was added at 15 and 20% partial replacement for cement in the mixes. Physical and chemical properties of the materials used were determined, while the workability of the concrete mixes was examined using the slump. The compressive strength of the hardened concrete was determined after 7, 28 and 56 days of curing using 100 mm cube samples. Scanning Electron Microscope (SEM) was used to evaluate the morphology of selected concrete. Results showed that soaking of the recycled aggregate in water limit the water absorption rate of the RCA aggregates in the mixes, while the addition of calcined clay was observed to slightly reduce the workability of the concrete mixes. A reduction trend in compressive strength was noticed as the percentage of recycled aggregate increases, however, a significant increase in compressive strength was observed with the addition of calcined clay at 15% cement replacement. An optimum concrete mix containing 20% recycled aggregate and 15% calcined clay showed improve performance compare to the other mixes. The implication of these results suggests that recycled concrete aggregate can be used for the production of sustainable structural concrete.


2019 ◽  
Vol 8 (3) ◽  
pp. 3439-3443

Use of reused aggregate in concrete can be useful for the ecological protection and economical terms. The application of recycled has been started in many construction projects. Paper hear says the basic properties of recycled concrete aggregate. It similarly relates the properties with natural aggregate, similarly the properties of recycled aggregates concrete were also determined and explained here. For the concrete grades of M25 and M30, the recycled aggregate concrete is produced by changing the natural aggregate, by recycled aggregate in conventional concrete with 5%, 10% and 15% of weight of natural aggregates. Experimental studies were carried out on influence of recycled aggregate treatment and comparison of strength properties of conventional cement concrete and recycled aggregate concrete at the curing of 7days and 28 days. They are two types of treatments under the considerations for recycled aggregates are Abrasion of recycled aggregate and chemical immersion


2019 ◽  
Vol 262 ◽  
pp. 06010
Author(s):  
Marek Węglorz ◽  
Andrzej Ajdukiewicz ◽  
Alina Kliszczewicz

Assessment of recycled aggregate concrete (RAC) properties by laboratory tests is still required due to lack of precise guidelines and with taking into account slightly different behaviour of such concretes in comparison with natural aggregate concretes (NAC). It is especially important when recycled concrete aggregates are used for the structural elements. In this paper, the following rules for the whole concrete recycling cycle were defined: (1) rules for examination of original concretes selected for recycling and (2) rules for aggregate preparation and their fractionize as well as design rules for recycled aggregate concrete mixtures (including required tests of recycled aggregates and concrete properties). Requirements towards recycled aggregate concrete formulated in this paper are based on the long term experience and research works on the RAC which were held by A. Ajdukiewicz and A. Kliszczewicz in the Department of Structural Engineering of the Silesian University of Technology, practically since 1995.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1976 ◽  
Author(s):  
Samuel Roque ◽  
Cinthia Maia Pederneiras ◽  
Catarina Brazão Farinha ◽  
Jorge de Brito ◽  
Rosário Veiga

This paper presents a study of incorporation of two types of construction and demolition waste (CDW) in rendering mortars, as aggregates at 0%, 20%, 50% and 100% (by volume). Recycled concrete aggregate (RCA) and mixed recycled aggregate (MRA) were used. The former is mainly composed of cementitious waste and the latter consists of a mixture of non-segregated wastes. The performance of the cement mortars with recycled aggregates was evaluated through an extensive experimental programme. The analysis comprised workability, mechanical strength, water absorption, shrinkage, open porosity and the evaluation of durability by permeability to water under pressure after an artificial accelerated ageing test. The results are considered positive, although as the incorporation of recycled aggregates (both MRA and RCA) increased the mechanical strength, the modulus of elasticity and bulk density decreased, which leads to the production of lighter mortars that are less susceptible to cracking. The modified mortar with 20% of MRA presented the best performance, in terms of mechanical behaviour.


2020 ◽  
Vol 10 (20) ◽  
pp. 7348
Author(s):  
F. Fiol ◽  
C. Thomas ◽  
J. M. Manso ◽  
I. López

The research presented in this article analysed the influence of incorporating precast concrete waste as an alternative to coarse aggregate in self-compacting concrete to generate new precast elements. The experimental study involved the characterization of recycled aggregate and the design of the mix of the new self-compacting concrete (SCC). The experimental study evaluates the physical processes that affect the durability of concrete with percentages of incorporation such as 20%, 50% and 100% of recycled aggregate. Two types of SCC were manufactured with minimum compressive strength of 30 MPa and 45 MPa. The properties analysed were density of hardened SCC, shrinkage cracking, freeze-thaw resistance, resistance to ageing by thermal shock and abrasion resistance. The results obtained were compared with those of the control concrete, observing great capacity of the SCC under physical aggressions that affect durability. The results of this research show that it is possible to use the recycled aggregate coming from precast pieces in order to the manufacture of self-compacting recycled concrete in the same precast industry. However, high loss of proprieties occurs for a 100% substitution, while for 20% and 50%, the variations with respect to control concrete are smaller. In addition, taking advantage of this waste to incorporate it back into the production chain contributes to more sustainable construction.


Sign in / Sign up

Export Citation Format

Share Document