Fabrication of Sulfonated Bamboo Charcoal-Chitosan (sBC-CS) Hybrid and its Applications for Reinforcement of Styrene-Butadiene Rubber

2017 ◽  
Vol 872 ◽  
pp. 160-164
Author(s):  
Xiang Xu Li ◽  
Ur Ryong Cho

Styrene-Butadiene Rubber (SBR) composites incorporated with different fillers with similar filling ratio, were fabricated by latex compounding method. The particle size, tensile strength, abrasion resistance of the vulcanized rubber composites were investigated. The sulfonated bamboo charcoal-chitosan hybrid (sBC-CS) showed great dispersion rate and smaller particle size compared with those of other fillers. In addition, this composite exhibited the best mechanical reinforcing performance among the four fillers.

2012 ◽  
Vol 488-489 ◽  
pp. 612-616 ◽  
Author(s):  
Anyaporn Boonmahitthisud ◽  
Saowaroj Chuayjuljit

In this study, natural rubber/styrene butadiene rubber (NR/SBR) and NR/carboxylated styrene butadiene rubber (NR/XSBR) nanocomposites with carbon nanotube (CNT) were prepared by a latex compounding method. The dry weight ratio of either NR/SBR or NR/XSBR was fixed to 80/20 and the CNT loading in each blend was varied from 0.1 to 0.4 phr. The nanocomposite latices were cast into sheets on a glass mold and then cured at 80°C for 3 h. The tensile properties (tensile strength, modulus at 300% strain, elongation at break) and dynamic mechanical properties (storage modulus, loss tangent) of the vulcanizates were then evaluated. The results showed that the addition of CNT at a very loading could enhance the tensile strength, modulus at 300% strain and storage modulus of these two rubber bends in a dose dependent manner, except that the tensile strength peaked at an optimum filler level, declining at higher filler loadings, whilst the elongation at break deteriorated. Moreover, the tensile strength and modulus at 300% strain of the NR/XSBR nanocomposites appeared to be higher than those of the NR/SBR nanocomposites at the same CNT loadings.


Author(s):  
Ahmad Mousa ◽  
Gert Heinrich ◽  
Udo Wagenknecht ◽  
Omar Arabeyat

Exfoliated graphite (EG) was prepared from commercially available natural graphite flakes (NGF), through strong acid treatment followed by thermal shock at 950 °C. The EG sheets were characterized with respect to their thermal stability via thermogravimetric analysis (TGA) and Raman spectra. Their morphology and particle size were evaluated using scanning electron microscope (SEM) and particle size analyzer. The potential of EG as reinforcement on the mechanical and thermal properties of the dynamically vulcanized polystyrene/styrene butadiene rubber (PS/SBR) composites was evaluated. The influence of EG on the electrical properties of the composites was measured as well.


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


1999 ◽  
Vol 72 (4) ◽  
pp. 721-730 ◽  
Author(s):  
G. R. Hamed ◽  
J. Zhao

Abstract Typical sulfur-cured vulcanizates of styrene-butadiene rubber (SBR) and natural rubber (NR) were prepared, and subjected to air-oven aging at 100 °C. Gum specimens exhibited an initial aging period in which stiffness was unchanged, while tensile strength and strain-to-break were significantly reduced. In contrast, black-filled vulcanizates stiffened during early aging. After intermediate aging times, NR specimens softened, while SBR stiffened. With prolonged aging, all compositions became hard and inextensible.


Sign in / Sign up

Export Citation Format

Share Document