Hybrid Adhesives Filled with Functionalized and Non Functionalized Silica Nanoparticles

2018 ◽  
Vol 875 ◽  
pp. 9-13
Author(s):  
José de Jesús Figueroa-Lara ◽  
Miguel Torres-Rodríguez ◽  
Mirella Gutiérrez-Arzaluz

Hybrid adhesives epoxy-silica-zirconia were prepared and applied to bond aluminum sheet specimens. Silica nanoparticles were synthesized with the sol-gel “in situ” technique utilizing two different precursors, namely tetraethyl orthosilicate (TEOS) and 3 glycidyloxypropyltrimethoxysilane (GPTMS). Zirconia nanoparticles were prepared also with sol-gel technique and added to the hybrid adhesives before curing. The adhesive properties of the prepared materials were improved after performing several physical and chemical treatments to the aluminium specimens. The best apparent shear strength tests were for the adhesive hybrid materials prepared at 100°C with TEOS.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ismail Ab Rahman ◽  
Vejayakumaran Padavettan

Application of silica nanoparticles as fillers in the preparation of nanocomposite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nanocomposites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nanocomposites, generally by sol-gel technique. The effect of nanosilica on the properties of various types of silica-polymer composites is also summarized.


Author(s):  
Abdu. I. Abdallah ◽  
M. Sayed ◽  
M. Awaad ◽  
Adam H. E. Yousif ◽  
S.M. Naga
Keyword(s):  
Sol Gel ◽  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Oon Lee Kang ◽  
Azizan Ahmad ◽  
Nur Hasyareeda Hassan ◽  
Usman Ali Rana

In the present research, [MG49-LiClO4]:[HNO3-THF/TiO2-SiO2] and [MG49-LiClO4]:[ClHNO2-THF/TiO2-SiO2] polymer electrolytes were first prepared through simple stepwise in situ techniques: sol-gel technique and solution-cast technique. [MG49-LiClO4]:[HNO3-THF/TiO2-SiO2] and [MG49-LiClO4]:[ClHNO2-THF/TiO2-SiO2] polymer electrolytes were then characterized through different experimental techniques. [MG49-LiClO4]:[HNO3-THF/TiO2-SiO2] and [MG49-LiClO4]:[ClHNO2-THF/TiO2-SiO2] polymer electrolytes had exhibited significant structural changes upon different salt concentrations. In the present investigation, [MG49-LiClO4]:[HNO3-THF/TiO2-SiO2] and [MG49-LiClO4]:[ClHNO2-THF/TiO2-SiO2] polymer electrolytes had attained maximum ionic conductivities (σ~10-7 S/cm at ambient temperature; 10−4 S/cm at 100°C) upon 25 wt.% salt insertion. [MG49-LiClO4]:[HNO3-THF/TiO2-SiO2] and [MG49-LiClO4]:[ClHNO2-THF/TiO2-SiO2] polymer electrolytes had exhibited distinct conduction mechanisms in similar experimental configuration. [MG49-LiClO4]:[HNO3-THF/TiO2-SiO2] and [MG49-LiClO4]:[ClHNO2-THF/TiO2-SiO2] polymer electrolytes had exhibited different stability characteristics over certain operational condition.


2019 ◽  
Vol 33 (13) ◽  
pp. 1950134 ◽  
Author(s):  
Muhammad Ajmal ◽  
M. U. Islam

Y-type hexagonal ferrite (CaBaCo2Ga[Formula: see text]Fe[Formula: see text]O[Formula: see text]) was synthesized by sol–gel technique. The ferrite–polymer composites (1−x)CaBaCo2Ga[Formula: see text]Fe[Formula: see text]O[Formula: see text]+(x)polyaniline (x=0.25, 0.50, 0.75, 1) namely PF1, PF2, PF3 and polyaniline (PANI) were synthesized by in situ polymerization. The synthesized samples were characterized by XRD, SEM, electrical and dielectric measurements, optical and magnetic studies. XRD pattern reveals a broad peak of polyaniline which is an indication of amorphous nature of PANI. Room-temperature resistivity increases from 2.14 × 101 [Formula: see text]cm to 2.78 × 10[Formula: see text]cm as ferrite content increases due to resistive behavior of the ferrite particles dispersed in the PANI matrix. The value of dielectric constant decreases at fixed frequency with increasing concentration of ferrite filler which is predominantly due to exchange of electrons between Fe[Formula: see text] and Fe[Formula: see text] ions that ultimately results in enhancement of electric polarization and conductivity. The optical bandgap increases with increasing amount of ferrite in the composites. The saturation magnetization and remanence increase with the increase of ferrite filler amount in PANI matrix whereas coercivity decreases. The decrease in coercivity and increase in saturation magnetization are related to Brown’s relation. The present nanocomposite samples may be the best candidates for electromagnetic shielding.


Polymer ◽  
2005 ◽  
Vol 46 (10) ◽  
pp. 3343-3354 ◽  
Author(s):  
Rajatendu Sengupta ◽  
Abhijit Bandyopadhyay ◽  
Sunil Sabharwal ◽  
Tapan K. Chaki ◽  
Anil K. Bhowmick

Soft Matter ◽  
2019 ◽  
Vol 15 (16) ◽  
pp. 3379-3388 ◽  
Author(s):  
Stephen Boakye-Ansah ◽  
Matthew S. Schwenger ◽  
Martin F. Haase

Functionalized silica nanoparticles with or without in situ surface modification are used to fabricate bijels via solvent transfer induced phase separation (STrIPS).


2015 ◽  
Vol 1107 ◽  
pp. 267-271
Author(s):  
Sodipo Bashiru Kayode ◽  
Azlan Abdul Aziz

The science of core-shell nanoparticles requires investigation into several physical and chemical properties of the composite nanoparticles. Unlike the conventional sol-gel or the reverse microemulsion micelle method, we presented here a non-seeded process of encapsulating superparamagnetic magnetite nanoparticles (SPMN) with silica. Physico-chemical analysis of the product was used to confirm the result of the coating procedure. Colloidal suspension of SPMN and silica nanoparticles were synthesised through coprecipitation method and modified Stöber method respectively. Afterwards, both colloidal suspensions of SPMN and silica nanoparticles were sonicated to encapsulate the SPMN with silica. Elemental mapping of the composite particles with electron spectroscopy imaging (ESI) confirmed the core-shell micrograph of the SPMN and silica. The X-ray diffraction pattern (XRD) showed the silica shell to be in amorphous form. FTIR analysis further confirmed the chemical properties of the product to be silica coated SPMN.


1999 ◽  
Vol 576 ◽  
Author(s):  
Khan M. Asif ◽  
M.I. Sarwar ◽  
Z. Ahmad

Novel micro-composites from Polyvinyl chloride (PVC) and silica were prepared using sol-gel technique. Different catalysts were used for the in-situ generation of silica network from tetraethylorthosilicate (TEOS) in the PVC matrix. Thin transparent films containing various proportions of silica in PVC were cast by the solvent elution technique. Mechanical properties of these films were studied. The results showed an increase in the value of Young's modulus and strain at rupture by the addition of small amount of silica in PVC. However, the stress at yields point and stress at rupture decreased with the addition of silica contents. Scanning electron microscopy (SEM-EDAX) studies were also performed on these samples.


Sign in / Sign up

Export Citation Format

Share Document