Study the Effect of Different Roller Shape on the Spread of Material in Rolling Operation Using Manufacturing Simulation

2019 ◽  
Vol 895 ◽  
pp. 290-294
Author(s):  
T.S. Hemanth ◽  
Y. Arunkumar ◽  
M.S. Srinath

Simulation plays a vital role in present-day product development. Simulation of manufacturing process in product design and development helps to save valuable resources in terms of materials, energy and also in the optimisation of process parameters. Metal rolling accounts to majority of the materials used in the bulk-forming. It is difficult to predict metal flow in the lateral direction in the conventional metal rolling. Manufacturing the rollers of different shapes and conducting experiments physically consumes valuable resources. These valuable resource are saved using the simulation of rolling operations using FEM-based metal forming simulation software. Simulation experiments are carried out to determine the effect of different shapes of rollers on the spread of material. In this work, spread of the material is analysed when the material is passed through different shaped rollers. Three types of rollers have been designed to study the effect of adding grooves on the spread of materials. It is seen that smaller groove size decreases the spread whereas larger size groove on the rollers increases the spread.

Author(s):  
A.V. Vlasov ◽  
D.V. Krivenko ◽  
S.A. Stebunov ◽  
N.V. Biba ◽  
A.M. Dyuzhev

The isothermal surfaces method for preform design is proposed. The procedure for determining of the preform shape is given. The features in using of the method for forgings with various shapes are considered. The method is illustrated by industrial examples. The design algorithm uses the QForm metal forming simulation software to build isothermal surfaces and check the quality of the designed die geometry by finite element modeling, as well as specially developed version of the QFormDirect CAD based on SpaceClaimтм.


2018 ◽  
Vol 144 ◽  
pp. 03005
Author(s):  
T. S. Hemanth ◽  
Y. Arunkumar ◽  
M. S. Srinath.

Metal forming plays a very important role in the manufacturing. Simulation of manufacturing process aids in the improvement of quality, reduce energy and resource consumption and helps in visualization of the process. The design of experiment helps in optimization of the parameters in any processes. In this paper, Taguchi optimization technique is used to predict the best results for the given inputs such as roller diameter, friction value, velocity of the rollers and percentage reduction to the forming process and get the optimized values for spread, hardness, effective stress, power required, strain rate and torque using the manufacturing simulation software. It is found that the important parameter is percentage reduction affecting the effective stress. Optimal parameters with desirability value of 0.87 have been obtained.


Wheels in the motor cycle play major role to carry the load. Generally spokes are subjected to fatigue loads. So it is necessary to study the response of the wheel under fatigue loads. In the present work different shapes of the wheel spokes are modeled and analyzed their response for fatigue loads by using finite element simulation software ANSYS workbench. The shape of the spokes used for the alloy wheels are curved, inclined, Y shape, Triangle shape, V Shape and H shape with constant volume. The material parametric study is also performed on the different cases of the spokes. The materials used are Structural steel, Aluminum alloy, Carbon steel and magnesium Alloy. The results show that the carbon steel shown better results when compared to remaining materials in view of life, damage and factor of safety. V curved with pad shape possess high life, high factor of safety and low damage factor compared with the remaining models.


2015 ◽  
Vol 60 (2) ◽  
pp. 801-807 ◽  
Author(s):  
A. Tofil ◽  
J. Tomczak ◽  
T. Bulzak

Abstract The paper presents a selection of numerical and theoretical results of the cross wedge rolling process for producing stepped shafts made of aluminum alloy 6061. The numerical modeling was performed using the FEM-based Simufact Forming simulation software. In the simulations, we examined the kinematics of metal flow and determined the distribution patterns of effective strains, temperatures, axial stresses and the Cockroft-Latham damage criterion. Variations in the rolling forces were determined, too. The numerical results were verified experimentally using a universal rolling mill designed and constructed by the present authors. This machine can be used to perform such processes as cross wedge rolling, longitudinal rolling and round bar cropping. During the experiments, we examined process stability and finished product geometry and recorded the torques. The experimental results confirm that axisymmetric aluminum alloy shafts can be produced by cross wedge rolling with two rolls. Last but not least, the experiments served to evaluate the technological potential of the rolling mill used.


2020 ◽  
Vol 09 ◽  
Author(s):  
Ahmed M. Abu-Dief ◽  
W. S. Mohamed

Abstract:: Sustainability environmental lack is a growing and pivotal mater due to the issues: such as disturbances associated with biodiversity pollution, and climate change. Pollutants are the major cause of these environmental threats in the atmosphere. In recently, the nano-based photocatalyst is at the forefront of the author's interest because of its promising potential as a green chemical-based compound, high catalytic activity, the suitable and controllable surface area for wastewater treatment. Semiconductor materials in nanosized scale have electronic and optical properties depend on its building block size, which plays a vital role in developing smart materials that are well efficient for simultaneously destroying harmful chemical contaminants from our environment. This makes these materials used in many possible industrial applications such as water purification. In this Review, we report the most significant results contributing to progress in the area of environmental hazardous pollutant detection and removal focused on water purification especially through photo-catalysis to give readers an overview of the present research trends. Moreover, we analyze previous studies to indicate key principles of photo-catalysis and provide guidelines that can be used to fabricate more efficient photocatalysts.


2015 ◽  
Vol 651-653 ◽  
pp. 1015-1020 ◽  
Author(s):  
Matthias Schweinoch ◽  
Alexei Sacharow ◽  
Dirk Biermann ◽  
Christoph Buchheim

Springback effects, as occuring in sheet metal forming processes, pose a challenge to manufacturingplanning: the as-built part may deviate from the desired shape rendering it unusable forits intended purpose. A compensation can be achieved by modifying the forming tools to counteractthe shape deviations. A prerequisite to compensation is the knowledge of correspondences (ui; vj),between points ui on the desired and vj on the actual shape. FEM-based simulation software providesmeans to both virtually predict springback and directly obtain correspondences. In case of experimentalprototyping and validation, however, finding correspondences requires solving a registrationproblem: given a test shape Q (scan points of the as-built geometry) and a reference shape R (CADdata of the desired geometry), a transformation S has to be found to fit both objects. Correspondencesbetween S(Q) and R may then be computed based on a metric.If S is restricted to Euclidean transformations, then S(Q) results in a rigid transformation, whereevery point of Q is subject to the same translation and rotation. Local geometric deviations due tospringback are not considered, often resulting in invalid correspondences. In this contribution, a nonrigidregistration method for the efficient analysis of springback is therefore presented. The test shape Q is iteratively partitioned into segments with respect to an error metric. The segments are locally registeredusing rigid registration subject to regulatory conditions. Resulting discontinuities are addressedby minimization of the deformation energy. The error metric uses information about the deviationscomputed based on the correspondences of the previous iteration, e.g. maximum errors or changes ofthe sign. This adaptive per-segment registration allows appropriate correspondences to be determinedeven under local geometric deviations.


Author(s):  
Ike Sowden ◽  
George Currier

Casting integrity is essential for providing components that meet design criteria for strength and fatigue performance. As the leading method of manufacturing metal components in the rail industry, maintaining quality and consistency is a continuing struggle for car owners and builders. Internal shrinkage and voids due to insufficient metal flow are issues commonly found in casting molds which are not designed or utilized properly. Using casting simulation software, potential issues can be discovered upfront and robust mold designs can be created that offer a tolerance for the variance or variations in casting conditions that are present in the real world. Strato, Inc. has extensively studied the effectiveness of these simulations in foundries through advanced inspection techniques. It is evident that casting simulations can not only locate, but also explain shrinkage cavities and voids through material density plots and inspection of directional solidification via critical fraction solid time plots. This approach is markedly more efficient than the traditional trial and error method, where mold makers rely on experience and destructive testing to develop acceptable mold designs. With recent advances in simulation software, the labor and time-intensive ways of the past have been supplanted by a more scientific approach to the problem. Understanding the fluid dynamics and thermodynamics of the casting process provides a means of creating a stable, repeatable final product. This higher quality final product can be delivered faster to the customer and at a far less expense by identifying problem areas prior to the tooling and sampling processes. Case-studies explored by the Strato engineering team suggest that using this software decreases the fallout rate.


2020 ◽  
Vol 12 (24) ◽  
pp. 10686
Author(s):  
Mona Abouhamad ◽  
Metwally Abu-Hamd

The objective of this paper is to apply the life cycle assessment methodology to assess the environmental impacts of light steel framed buildings fabricated from cold formed steel (CFS) sections. The assessment covers all phases over the life span of the building from material production, construction, use, and the end of building life, in addition to loads and benefits from reuse/recycling after building disposal. The life cycle inventory and environmental impact indicators are estimated using the Athena Impact Estimator for Buildings. The input data related to the building materials used are extracted from a building information model of the building while the operating energy in the use phase is calculated using an energy simulation software. The Athena Impact Estimator calculates the following mid-point environmental measures: global warming potential (GWP), acidification potential, human health potential, ozone depletion potential, smog potential, eutrophication potential, primary and non-renewable energy (PE) consumption, and fossil fuel consumption. The LCA assessment was applied to a case study of a university building. Results of the case study related to GWP and PE were as follows. The building foundations were responsible for 29% of the embodied GWP and 20% of the embodied PE, while the CFS skeleton was responsible for 30% of the embodied GWP and 49% of the embodied PE. The production stage was responsible for 90% of the embodied GWP and embodied PE. When benefits associated with recycling/reuse were included in the analysis according to Module D of EN 15978, the embodied GWP was reduced by 15.4% while the embodied PE was reduced by 6.22%. Compared with conventional construction systems, the CFS framing systems had much lower embodied GWP and PE.


Sign in / Sign up

Export Citation Format

Share Document