Study on Poisson Ratio of Soil-Rock Mixture in Low Strain

2011 ◽  
Vol 90-93 ◽  
pp. 1921-1925 ◽  
Author(s):  
Xian Min Zhang ◽  
Yao Zhi Lv ◽  
Yi Ming Zhao ◽  
Yu Hui Zhang ◽  
Zhi Liao

Longitudinal wave velocity and shear wave velocity of two kinds of the soil-rock mixture samples with different stone content and water content are tested. Then the poisson ratio of the samples in Low Strain can be calculated with the method of wave velocity testing. Analyzing the relationship between poisson ratio, water content and stone content, the dualistic nonlinear models of poisson ratio, water content and stone content are established. The result of verifying is shown that the absolute error of poisson ratio is less than 0.01 and the relative error is less than 2%. The models not only can show the relationship between poisson ratio, water content and stone content but can provide the reference when changing the Rayleigh wave velocity to shear wave velocity each other.

2014 ◽  
Vol 635-637 ◽  
pp. 750-754
Author(s):  
Peng Hu ◽  
Qing Li ◽  
Yi Wei Xu ◽  
Nan Ying Shentu ◽  
Quan Yuan Peng

Expound the importance of soil shear strength measurement at mudslide hidden point to release the loss caused by the disaster, explain the relationship between shear wave velocity, moisture content and shear strength, design the shear strength monitoring system combining the shear wave velocity measured by Piezoelectric bender elements and moisture content.


2014 ◽  
Vol 633 ◽  
pp. 472-475 ◽  
Author(s):  
Tian Tian Sun ◽  
Yan Xia Wang ◽  
Hai Yun ◽  
Dong Huan Zhang ◽  
Qing Hui Shang

Mullite material is a material commonly used in honeycomb regenerator, because in the process of using material under big temperature difference effect, so have a great demand for its thermal shock resistance. The used mullite ceramics were made by the direct solid phase sintering method, and the modulus of elasticity of the mullite ceramics measured by ultrasonic pulse-echo method in a thermal shock and thermal fatigue experiment, respectively. In the air-cooling condition, the study found the mullite ceramic without thermal shock that the longitudinal wave velocity and shear wave velocity respectively 3970(m/s) and 2492(m/s). After 45 times thermal shock of temperature difference of 800°C, longitudinal wave velocity and shear wave velocity decreased to 3910(m/s) and 2457(m/s), and the value of the modulus of elasticity changed 1020MPa. By observing the change of the elastic modulus value rule, can know the elastic deformation of thermal shock on the material performance of thermal shock damage. Moreover, the results can provide the data basis for the calculation of the residual strength and the numerical simulation of thermal stress.


2012 ◽  
Vol 535-537 ◽  
pp. 1923-1926
Author(s):  
Jian Ping Zhou ◽  
Jin Xia Liu ◽  
Wen Yang Gao ◽  
Zhi Wen Cui ◽  
Wei Guo Lv ◽  
...  

The velocities of shear waves propagating along radial direction of birch and elmwood specimens are measured in order to study the effect of anisotropy on shear wave velocity. The relationship between the shear wave velocity and the oscillation direction is examined by rotating an ultrasonic sensor. The results indicate that the effect of anisotropy on shear wave velocity in birch and elmwood specimens is similar to Japanese magnolia specimen. When the oscillation direction of the shear wave corresponds to the certain anisotropic direction of the wood specimen, the shear wave velocity decreases sharply and the relationship between shear wave velocity and rotation angle tends to become discontinuous. The intrinsic birefringence due to the anisotropy of birch and elmwood woods is observed. Their texture anisotropies are strong. In an isotropic nylon, on the contrary, the value of shear wave velocity was similar to a circular ring. This investigation is significant meanings in architectural and civil engineering field.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1226
Author(s):  
Dong-Ju Kim ◽  
Jung-Doung Yu ◽  
Yong-Hoon Byun

Shear wave velocity and small-strain shear modulus are widely used as the mechanical properties of soil. The objective of this study is to develop a new shear wave monitoring system using a pair of piezoelectric ring benders (RBs) and to evaluate the suitability of RB in compacted soils compared with the bender element and ultrasonic transducer. The RB is a multilayered piezoelectric actuator, which can generate shear waves without disturbing soils. For five compacted soil specimens, the shear waves are monitored by using three different piezoelectric transducers. Results of time-domain response show that the output signals measured from the RB vary according to the water content of the specimen and the frequency of the input signal. Except at the water content of 9.3%, the difference in the resonant frequencies between the three transducers is not significant. The shear wave velocities for the RB are slightly greater than those for the other transducers. For the RB, the exponential relationship between the shear wave velocity and dry unit weight is better established compared with that of the other transducers. The newly proposed piezoelectric transducer RB may be useful for the evaluation of the shear wave velocity and small-strain shear modulus of compacted soils.


2019 ◽  
Vol 2 (3) ◽  

The quality and assessment of a reservoir can be documented in details by the application of seismic shear wave. This research aims to calculate fractal dimension from the relationship among seismic shear wave velocity, maximum seismic shear wave velocity and wetting phase saturation and to approve it by the fractal dimension derived from the relationship among capillary pressure and wetting phase saturation. Two equations for calculating the fractal dimensions have been employed. The first one describes the functional relationship between wetting phase saturation, seismic shear wave velocity and maximum seismic shear wave velocity and fractal dimension. The second equation implies to the wetting phase saturation as a function of capillary pressure and the fractal dimension. Two procedures for obtaining the fractal dimension have been utilized. The first procedure was done by plotting the logarithm of the ratio between seismic shear wave velocity and maximum seismic shear wave velocity versus logarithm wetting phase saturation. The slope of the first procedure = 3- Df (fractal dimension). The second procedure for obtaining the fractal dimension was determined by plotting the logarithm of capillary pressure versus the logarithm of wetting phase saturation. The slope of the second procedure = Df -3. On the basis of the obtained results of the fabricated stratigraphic column and the attained values of the fractal dimension, the sandstones of the Shajara reservoirs of the Shajara Formation were divided here into three units.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Byung Jae Lee ◽  
Seong-Hoon Kee ◽  
Taekeun Oh ◽  
Yun-Yong Kim

The objectives of this study are to investigate the relationship between static and dynamic elastic moduli determined using shear-wave velocity measurements and to demonstrate the practical potential of the shear-wave velocity method for in situ dynamic modulus evaluation. Three hundred 150 by 300 mm concrete cylinders were prepared from three different mixtures with target compressive strengths of 30, 35, and 40 MPa. Static and dynamic tests were performed at 4, 7, 14, and 28 days to evaluate the compressive strength and the static and dynamic moduli of the cylinders. The results obtained from the shear-wave velocity measurements were compared with dynamic moduli obtained from standard test methods (P-wave velocity measurements according to ASTM C597/C597M-16 and fundamental longitudinal and transverse resonance tests according to ASTM C215-14). The shear-wave velocity measured from cylinders showed excellent repeatability with a coefficient of variation (COV) less than 1%, which is as good as that of the standard test methods. The relationship between the dynamic elastic modulus based on shear-wave velocity and the chord elastic modulus according to ASTM C469/C469M was established. Furthermore, the best-fit line for the shear-wave velocity was also demonstrated to be effective for estimating compressive strength using an empirical relationship between compressive strength and static elastic modulus.


Sign in / Sign up

Export Citation Format

Share Document