Research on Isolated Strengthening of Erose School Buildings

2011 ◽  
Vol 94-96 ◽  
pp. 1298-1303
Author(s):  
Xi Sen Fan ◽  
Shu Zhen Ren

The aseismatic strengthening technique for masonry structure was researched in this paper. The seismic response of a L-type school building with and without isolation system were computed by using software SAP2000. The isolation system were made up of lead rubber bearings or combined Isolation system. The results showed that base-isolated strengthening can reduce not only the translational response but also the torsional response with earthquake. The combined Isolation system was more effetive in decreasing translational response than the lead rubber bearing, but inferior to in decreasing torsion response.

2020 ◽  
Vol 26 (19-20) ◽  
pp. 1646-1655
Author(s):  
Shen-Haw Ju

This study investigates the derailment of trains moving on bridges with lead rubber bearings. A moving wheel/rail axis element that couples two wheels and rails together is first developed to generate a train finite element model with 12 cars, while the sliding, sticking, and separation modes of the wheels and rails are accurately simulated. The finite element results indicate that the base shear of the bridge with lead rubber bearings is much smaller than that without lead rubber bearings. Similar to the base shear, the train derailment coefficients for the bridge with lead rubber bearings are much smaller than those without lead rubber bearings because yield lead rubber bearings during large seismic loads can change the bridge natural frequency to avoid resonance. For earthquakes with a very long dominant period, the lead rubber bearing effect to reduce the train derailment may not be obvious because the natural period of the bridge due to the full yield of lead rubber bearings can approach the dominant period of the earthquake.


Author(s):  
Naito Nobuyuki ◽  
Park Kyeonghoon ◽  
Mazda Taiji ◽  
Uno Hiroshige ◽  
Kawakami Masahide

The characteristics of the seismic bearing change depending on various factors. When an earthquake occurs, the behavior of the bridge may differ from the values expected in the structural design. The shear deformation of the seismic bearing may increase, but it is difficult to reach the fracturede formation. This paper studied the effect of the stiffness due to various dependency and durability on Lead Rubber Bearings (LRB) and the over strength of bridge piers on the bearing behavior when an earthquake occurred. As a result, if the stiffness of LRB reduces within the criteria, seismic performance can be expected safety even if the shear strain designed in the current design is greater than the allowable shear strain. The reason is that the hardening phenomenon in the high strain region of the laminated rubber bearing suppresses the displacement. Also, since the seismic bridges with over strength of the piers have come near elastic behavior when an earthquake occurs, shear strain is easy to be large.


2012 ◽  
Vol 446-449 ◽  
pp. 3299-3303
Author(s):  
Xi Sen Fan ◽  
Ting Lei Tian

The isolation system between the upper structure and the foundation could reduce the seismic response of the former. A system combined of sliding and lead rubber bearings (LRB) is more effective in seismic isolation than using the later alone. In this research, the seismic responses of a building which was set with LRB and a combined system (the proportions between the sliding and LRB were 1/6, 1/4 and 1/3) respectively were analyzed and compared to that of the building without base isolation system to investigate the effect of seismic isolation. The relationship between isolation coefficient and the proportion of bearings was studied. The results show that the combined system could reduce the seismic response of structure, and it is more effective in seismic isolation if the leading bearing is relatively more.


Author(s):  
Iswandi Imran ◽  
Marie Hamidah ◽  
Tri Suryadi ◽  
Hasan Al-Harris ◽  
Syamsul Hidayat

<p>In order to overcome stringent seismic requirement in the new Greater Jakarta Light Rail Transit Project, a breakthrough seismic system shall be chosen to obtain expected structural performance. This seismic system shall be designed to provide operational performance level after strong earthquake events. To achieve the criteria, seismic isolation system using Lead Rubber Bearings is chosen. With this isolation system, Greater Jakarta LRT has become the first seismically isolated infrastructure and apparently an infrastructure with the largest numbers of LRBs in one single project in Indonesia. More than 10.400 Pcs LRBs are used for the first phase of the construction and the numbers will be certainly increased in the next phase of the construction. To evaluate the structural performance, non-linear time history analysis is used. A total of 3 pair matched ground motions will be used as the input for the response history analysis. The ability of the lead rubber bearing to isolate and dissipate earthquake actions will determine its structural performance level. This will be represented by the nonlinear hysteretic curves obtained throughout the earthquake actions.</p>


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


2020 ◽  
Vol 29 (5) ◽  
pp. 055045 ◽  
Author(s):  
Sasa Cao ◽  
Osman E Ozbulut ◽  
Suiwen Wu ◽  
Zhuo Sun ◽  
Jiangdong Deng

2020 ◽  
Vol 209 ◽  
pp. 110008
Author(s):  
Pengru Deng ◽  
Zhiping Gan ◽  
Toshiro Hayashikawa ◽  
Takashi Matsumoto

2019 ◽  
Vol 276 ◽  
pp. 01013
Author(s):  
Ahmad Basshofi Habieb ◽  
Tavio Tavio ◽  
Gabriele Milani ◽  
Usman Wijaya

Lead Rubber Bearing (LRB) has been widely applied for seismic protection of mid and high-rise buildings around the world. Its excellent energy dissipation becomes the most important aspect of this isolation system thanks to the plasticity and recovery behavior of the lead core. Aiming to develop a deeper knowledge on the behavior of LRB’s, a 3D detailed finite element (FE) modeling is performed in Abaqus FE software. Some important parameters involved in the model are plasticity of the lead core and hyper-elasticity and viscosity of the rubber material. The parameters for rubber material are derived from the results of experimental works in the laboratory, including uniaxial tensile test and relaxation test. The bearing model is then subjected to a cyclic shear-test under constant vertical load. The result of the 3D-FE model is then compared with the analytic-Abaqus model for LRB isolators, developed in the literature. Finally, both 3D-FE model and analytic model result in a good agreement on the shear behaviour of the presented LRB.


Sign in / Sign up

Export Citation Format

Share Document