Studies on the Efficiency of the CFG Pile-Net Reinforcement in the Soft Soil Subgrade

2011 ◽  
Vol 94-96 ◽  
pp. 2222-2225
Author(s):  
Feng Zhang ◽  
Zhao Yi Xu ◽  
Zhi Yi Li

Combined with Wuhan test section of Wuhan-Guangzhou passenger special line, proportioning of mixtures、integrity of pile、bearing capacity and cushion of CFG pile detection technology were studied in this paper. The systematic and perfect methods of quality detection and control standard have been put forward. It provide useful reference for practical engineering.

2013 ◽  
Vol 353-356 ◽  
pp. 337-340
Author(s):  
Ying Hao Wang ◽  
Yu Qin Feng ◽  
Shuo Li

By uniting composite foundation with CFG pile composite foundation for a practical engineering project in Baotou, the bearing capacity of CFG pile in sandy soil and silty soil foundation were analyzed. The conclusion can be applied to the similar projects in the region of Inner Mongolia.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wen Xiang Peng ◽  
Ming Kai Xu ◽  
Yi Fan Chen ◽  
Zheng Hao Chen ◽  
Zhuo Yang

As a new type of bolt, the polycystic aeration bolt has a broad application prospect in soft soil area; however, its design and production are still in the stage of constant exploration and improvement. From the perspective of bolt material and engineering cost, the important components of the polycystic aeration bolt were analyzed by combination with the existing bolt models, and a new structural design scheme of a kind of polycystic aeration bolt which can be used in practical engineering was presented in this paper. Then, the stress and failure mode of this bolt were discussed, and the theoretical equation of the bearing capacity was derived by using the elastic-plastic theory. In addition, the assembly and fabrication technology of this bolt in practical foundation pit engineering was described in detail. Finally, the field pull-out test of the polycystic aeration bolt was carried out, and the test results were compared with those of the conventional grouting bolt, which indicated that this new bolt has a greater advantage in bearing capacity than the conventional grouting bolt, verifying the feasibility of the structural design scheme of the polycystic aeration bolt proposed in this paper.


2014 ◽  
Vol 580-583 ◽  
pp. 518-523
Author(s):  
Juan Li ◽  
Yao Xu ◽  
Jun Yin

This paper analyzes the causes of larger differences of final settlement calculated value of cement fly-ash gravel pile (CFG pile) composite foundation of Baotou with actual observed result of it. On the basis of analysis on a number of practical engineering data of Baotou, we modify the settlement formula of the CFG pile composite foundation and gain the modified coefficient applied to the settlement calculation of the CFG pile composite foundation of Baotou. The modified formula and coefficient proposed in this paper have a positive effect on the accurate settlement calculation of puting forward a more accurate correction formula and coefficient of the calculation of the CFG pile composite foundation of Baotou.


2013 ◽  
Vol 353-356 ◽  
pp. 881-885
Author(s):  
Jian Xiong Liu ◽  
Yan Yan Gao ◽  
Xiu Hua Li

This study fitted the measured loading-settlement curve of half-screwed pilewith least square model solution of difference form of integrated exponential functional model, and predict ultimate bearing capacity of half-screwed pile according to the fitted curve of maximum curvature point. Combined with practical engineering research, the study explored the feasibility, rationality and limitations of predicting the half-screwed single pile ultimate bearing capacity with least square model solution of difference form of integrated exponential functional model, and provided the theoretical basis for the popularization and application of the half-screwed pile.


2021 ◽  
Vol 634 (1) ◽  
pp. 012116
Author(s):  
Heng Kong ◽  
Fei Guo ◽  
Mi Zhang ◽  
Shenglei Gao ◽  
Kaili Wang

2011 ◽  
Vol 368-373 ◽  
pp. 461-464
Author(s):  
Ren Le Ma ◽  
Ming Yi Zhang

With the rapid development of inland wind farm in China, the costal wind farm still has not got large-scale development as the result of the higher cost of fan foundation and the more difficulty of construction. The prefabricated prestressed cylinder foundation (PPC foundation), as a new type of wind turbine foundation designed for the soft soil region such as the inter-tidal coastal zone and inland wetlands, is introduced in this paper. The condition of lateral earth pressure distribution around the foundation which determines the flexural capacity of fan foundation in the soft soil is studied. Through theoretical analysis and mathematical derivation, the result shows that the lateral earth pressure around PPC foundation is changed with depth by 1.5th power curve which has good fitting to the finite element analysis result. The simplified and improved design process is applied into the practical engineering and the good economy of PPC foundation is proved.


Author(s):  
Me ti ◽  
Tri Harianto ◽  
Abdul Rachman Djamaluddin ◽  
Achmad Bakri Muhiddin

2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Yuanqi Li ◽  
Xiaoliang Qin ◽  
Jinhui Luo ◽  
Meng Xiao ◽  
Cong Hua

This paper is focused on the experimental study and numerical simulation of isolated spread concrete foundation slab with a large width-to-height ratio (in short ISCFS-LWR) to investigate the failure modes and uplift bearing capacity, as well as the design method of uplift capacity. First, a total of 16 isolated spread concrete foundation slabs with the width-to-height ratio varied from 1.5 to 4 and the hypotenuse slope varied from 10° to 30° were tested under uplift load. Based on the test results, effects of the width-to-height ratio and the hypotenuse slope on uplift bearing capacity of ISCFS-LWR were analyzed and discussed. Then, several numerical models were built using the finite element software ABAQUS and the results of numerical analysis agreed well with the test results. Furthermore, the cross-sectional performance of ISCFS-LWR was studied, and the coefficients of internal force arm were also evaluated further using previous validated numerical models. To obtain the suggested design method of uplift capacity for the foundation slab, effective width correction coefficient k and slope correction coefficient j were introduced to propose a design formula. Finally, the proposed design method was applied to a practical engineering, and the economic indicators obtained from the suggested design method were compared with that from the original design method. The results of this paper showed that the correction coefficient jsks based on numerical analysis agreed well with the recommended correction coefficient jk, and the error was between 1% and 3.4%, by which the reasonability of the proposed design method of uplift capacity for ISCFS-LWR has been proved. It can also be found that the economic benefits of the practical engineering in this paper were obvious due to the suggested design method, and this paper can provide a reference for other engineering practices and the further research work on ISCFS-LWR.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Mingfeng Lei ◽  
Linghui Liu ◽  
Yuexiang Lin ◽  
Jin Li

During deep foundation pit construction, the structural clearance intrusion, which is caused by the complex formation conditions and the inefficient drilling equipment, is usually detected due to the vertical deviation of piles. To meet construction requirements, pile parts intruding into the structural clearance are supposed to be excised. However, the sectional flexural strength of the pile is bound to decrease with partial excision, which would reduce the bearing capacity of the enclosing structure during construction. In this paper, a theoretical derivation of the normal sectional flexural strength of the partially excised circular pile is proposed. The derivation adopts the assumption of the plane section and steel ring equivalence and can be solved by the bisection method. Furthermore, the calculation method is applied to the pile evaluation of a practical engineering; also, the method is verified by the numerical method. The application results show that the excision of rebar and pile’s sectional area will cause a rapid linear decline in the sectional flexural strength. After excising 18 cm radial thickness of the circular pile (ϕ800 mm) and 6 longitudinal rebars, the sectional flexural strength of the pile decreases to 58% from the origin, which cannot meet the support requirement. The analysis indicates that pile reinforcements must be carried out to maintain the construction safety.


Sign in / Sign up

Export Citation Format

Share Document