Mixture of Different Surfactants Enhanced Chemical Flooding for Suijing Oil Recovery

2014 ◽  
Vol 1004-1005 ◽  
pp. 688-691
Author(s):  
Lu Ming Jiang ◽  
Qing Zhe Jiang ◽  
Zhao Zheng Song ◽  
Xiao Xiao

We investigate six different surfactants in interfacial tension (IFT) between the surfactant solution and the crude oil from Suijng oilfield. Based on the measurement of interfacial tension, the anion surfactant Heavy alkylbenzene sulfonate (HABS) and non-ionic surfactant alkyl glycoside (APG) are selected for the formulation of mixed surfactant. The IFT between the mixed surfactant solution comprising the HABS and APG and crude oil from Suijing can be reduced to ultralow.The experimental results indicate that the selected mixed surfactant formulation (0.20%HABS+0.10%APG) has a good performance on the tolerance of temperature and salinity and the coreflood test result indicate that the effective of the formulation was high which led to significant oil recovery (56.48%TOR).

1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^


1981 ◽  
Vol 21 (05) ◽  
pp. 573-580 ◽  
Author(s):  
J.H. Bae ◽  
C.B. Petrick

Abstract A sulfonate system composed of Stepan Petrostep TM 465, Petrostep 420, and 1-pentanol was investigated. The system was found to give ultralow interfacial tension against crude oil in a reasonable range of salinity and sulfonate concentrations. It also was found that sulfonate partitioned predominantly into the microemulsion phase. However, a significant amount also partitioned into water and, at high salinity, into the oil phase. On the other hand, the oil-soluble 1-pentanol partitioned mostly into oil and microemulsion phases.The interfacial tension between excess oil and water phases was ultralow, in the range of 10-3 mN/m. The tensions were close to and paralleled those between the middle and water phases. The trend remained the same even when the alcohol content changed. This means that in the salinity range that produces a three-phase region, below the optimal salinity, the water phase effectively displaces both oil and middle phases, even though the oil may not be displaced effectively by the middle phase. The implication is that, from an interfacial tension point of view, the oil recovery would be more favorable in the salinity range below the optimal salinity with the mixed petroleum sulfonate system used here. This was confirmed by oil recovery tests in Berea cores. It also was concluded that the change in viscosity upon microemulsion formation might have a significant influence on the surfactant flood performance. Introduction During a surfactant flood, the injected slug of surfactant solution undergoes complex changes as it traverses the reservoir. The surfactant solution is diluted by mixing with reservoir oil and brine and by depletion of surfactant due to retention. Also, the reservoir salinity rarely is the same as that of the injected solution. Moreover, there is chromatographic separation of sulfonate and cosurfactant.When phase equilibrium between oil, brine, and injected surfactant is reached in the front portion of the slug, a microemulsion phase is formed. This phase behavior and its importance in oil recovery have been the subject of numerous papers in recent years. The microemulsion phase formed in the reservoir contacts fresh reservoir brine and oil and undergoes further changes. All these changes are accompanied by property changes of the phases that affect oil recovery.The objective of this paper is to investigate the properties of a blend of commercial petroleum sulfonates and its behavior in different environments. The phase volume behavior and changes in the properties of different phases and their effects on oil recovery were studied. This work was done as part of the design of a surfactant process for a field application. Therefore, a crude oil was used as the hydrocarbon phase. Experimental Procedures A blend of Petrostep 465 and 420 from Stepan Chemical Co. was used as the surfactant. An equal weight of each sulfonate on a 100% active basis was mixed. 1-pentanol from Union Carbide Corp. was used as a cosurfactant. Unless otherwise stated, a 50g/kg sulfonate concentration was used in the solution. We used symbols to denote the formulation. The first number in the symbol indicates the 1-pentanol concentration; the last number indicates the NaCl concentration. Thus, 15 P 10 means that the solution consists of 50 g/kg sulfonate, 15 g/kg 1-pentanol, and 10 g/kg NaCl. The sulfonate blend first was mixed with alcohol, and then the required amount of NaCl brine was added to make the solution. SPEJ P. 573^


2019 ◽  
Vol 35 (2) ◽  
pp. 571-576
Author(s):  
Ahmed Sony ◽  
Hamdan Suhaimi ◽  
Laili Che Rose

A group of chemicals known as surfactants are widely used in industries. Their presence in any formulation, albeit little, exhibited superior functionality of the end-products. The dual hydrophobic and hydrophilic moiety of the structure have been shown to be responsible for reduction of surface/ interfacial tension and formation of micelles. In this work, a chemical flooding method using sodium dodecyl sulphate, SDS and its mixture with gum arabic, were carried out to study the recovery and efficiency of extracting the residual oil from the oil reservoirs. Two sets of experiments namely SDS and its mixture with gum arabic flooding at concentrations of SDS between 0.1-0.6 percent by weight are conducted. The percentage of gum arabic used is 16 percent by weight. Results shows that the use of SDS-Gum arabic flooding method yielded higher extraction of oil about 4.0 percent compared to SDS flooding. This suggests that the use of SDS and gum Arabic mixture is more efficient in increasing the amount of oil recovery.


2018 ◽  
Vol 39 (2) ◽  
pp. 63-69
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing

Microemulsion formation in surfactant solution has a major influence on the success of chemical injection techniques, and is one of the enhanced oil recovery methods. Its transparent and translucent homogenous mixtures of oil and water in the presence of surfactant have an ability to displace the remaining oil in the reservoir by reducing interfacial tension between oil and water. In this study, the effect of surfactant solution salinity on the formation of microemulsion and its mechanism to reduce the interfacial tension between water and oil from X oil field in Central Sumatera were carried out through compatibility observation, phase behaviour test and interfacial tension measurements in a laboratory. The results showed that microemulsion formation depends on the salinity of aqueous phase associated with different surfactant solubility by altering the polar area of surfactant. The optimum salinity was obtained with the addition of 0.65% Na2CO3 in which microemulsion was formed and the solubilization ratio of oil and water were equally high. At this condition the ultralow interfacial tension was around 10-3 dyne/cm and enabled improved oil recovery in mature oil fields after waterflooding


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


Author(s):  
Zhongbin Ye ◽  
Fuxiang Zhang ◽  
Lijuan Han ◽  
Pingya Luo ◽  
Jianjun Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document