scholarly journals Recovery of Crude Oil by Chemical Flooding Method using SDS and Gum Arabic Mixtures

2019 ◽  
Vol 35 (2) ◽  
pp. 571-576
Author(s):  
Ahmed Sony ◽  
Hamdan Suhaimi ◽  
Laili Che Rose

A group of chemicals known as surfactants are widely used in industries. Their presence in any formulation, albeit little, exhibited superior functionality of the end-products. The dual hydrophobic and hydrophilic moiety of the structure have been shown to be responsible for reduction of surface/ interfacial tension and formation of micelles. In this work, a chemical flooding method using sodium dodecyl sulphate, SDS and its mixture with gum arabic, were carried out to study the recovery and efficiency of extracting the residual oil from the oil reservoirs. Two sets of experiments namely SDS and its mixture with gum arabic flooding at concentrations of SDS between 0.1-0.6 percent by weight are conducted. The percentage of gum arabic used is 16 percent by weight. Results shows that the use of SDS-Gum arabic flooding method yielded higher extraction of oil about 4.0 percent compared to SDS flooding. This suggests that the use of SDS and gum Arabic mixture is more efficient in increasing the amount of oil recovery.

1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^


Author(s):  
Oluwaseun Taiwo ◽  
Kelani Bello ◽  
Ismaila Mohammed ◽  
Olalekan Olafuyi

Surfactant flooding, a chemical IOR technique is one of the viable EOR processes for recovering additional oil after water flooding. This is because it reduces the interfacial tension between the oil and water and allows trapped oil to be released for mobilization by a polymer.In this research, two sets of experiments were performed. First, the optimum surfactant concentration was determined through surfactant polymer flooding using a range of surfactant concentration of 0.1% to 0.6% and 15% of polymer. Secondly, another set of experiments to determine the optimum flow rate for surfactant flooding was carried out using the optimum surfactant concentration obtained. Lauryl Sulphate (Sodium Dodecyl Sulphate, SDS), an anionic surfactant, was used to alter the interfacial tension and reduce capillary pressure while Gum Arabic, an organic adhesive gotten from the hardened sap of the Acacia Senegal and Acacia Seyal trees, having a similar molecular structure and chemical characteristics with Xanthan Gum, was the polymer used to mobilize the oil.The results show that above 0.5%, oil recovery decreases with increase in concentration such that between 0.5 and 0.6%, a decrease of (20% -19%) is recorded. This suggests that it would be uneconomical to exceed surfactant concentration of 0.5%. It is shown in the result of the first set of experiments that a range of oil recovery of 59% to 76% for water flooding and a range of 11.64% to 20.02% additional oil recovery for surfactant Polymer flooding for a range of surfactant flow rate of surfactant concentration of 0.1% to 0.6%. For the second sets of experiments, a range of oil recovery of 64% to 68% for water flooding and a range of 15% to 24% additional oil recovery for surfactant flooding for a range of surfactant flow rate of surfactant flow rate of 1cc/min to 6cc/min. The Optimum surfactant flow rate resulting in the highest oil recovery for the chosen core size is 3cc/min. It's highly encouraged that the critical displacement rate is maintained to prevent the development of slug fingers.In summary, an optimum Surfactant flow rate is required for better performance of a Surfactant flooding.


2014 ◽  
Vol 1004-1005 ◽  
pp. 688-691
Author(s):  
Lu Ming Jiang ◽  
Qing Zhe Jiang ◽  
Zhao Zheng Song ◽  
Xiao Xiao

We investigate six different surfactants in interfacial tension (IFT) between the surfactant solution and the crude oil from Suijng oilfield. Based on the measurement of interfacial tension, the anion surfactant Heavy alkylbenzene sulfonate (HABS) and non-ionic surfactant alkyl glycoside (APG) are selected for the formulation of mixed surfactant. The IFT between the mixed surfactant solution comprising the HABS and APG and crude oil from Suijing can be reduced to ultralow.The experimental results indicate that the selected mixed surfactant formulation (0.20%HABS+0.10%APG) has a good performance on the tolerance of temperature and salinity and the coreflood test result indicate that the effective of the formulation was high which led to significant oil recovery (56.48%TOR).


2021 ◽  
Author(s):  
Nancy Chun Zhou ◽  
Meng Lu ◽  
Fuchen Liu ◽  
Wenhong Li ◽  
Jianshen Li ◽  
...  

Abstract Based on the results of the foam flooding for our low permeability reservoirs, we have explored the possibility of using low interfacial tension (IFT) surfactants to improve oil recovery. The objective of this work is to develop a robust low-tension surfactant formula through lab experiments to investigate several key factors for surfactant-based chemical flooding. Microemulsion phase behavior and aqueous solubility experiments at reservoir temperature were performed to develop the surfactant formula. After reviewing surfactant processes in literature and evaluating over 200 formulas using commercially available surfactants, we found that we may have long ignored the challenges of achieving aqueous stability and optimal microemulsion phase behavior for surfactant formulations in low salinity environments. A surfactant formula with a low IFT does not always result in a good microemulsion phase behavior. Therefore, a novel synergistic blend with two surfactants in the formulation was developed with a cost-effective nonionic surfactant. The formula exhibits an increased aqueous solubility, a lower optimum salinity, and an ultra-low IFT in the range of 10-4 mN/m. There were challenges of using a spinning drop tensiometer to measure the IFT of the black crude oil and the injection water at reservoir conditions. We managed the process and studied the IFTs of formulas with good Winsor type III phase behavior results. Several microemulsion phase behavior test methods were investigated, and a practical and rapid test method is proposed to be used in the field under operational conditions. Reservoir core flooding experiments including SP (surfactant-polymer) and LTG (low-tension-gas) were conducted to evaluate the oil recovery. SP flooding with a selected polymer for mobility control and a co-solvent recovered 76% of the waterflood residual oil. Furthermore, 98% residual crude oil recovery was achieved by LTG flooding through using an additional foaming agent and nitrogen. These results demonstrate a favorable mobilization and displacement of the residual oil for low permeability reservoirs. In summary, microemulsion phase behavior and aqueous solubility tests were used to develop coreflood formulations for low salinity, low temperature conditions. The formulation achieved significant oil recovery for both SP flooding and LTG flooding. Key factors for the low-tension surfactant-based chemical flooding are good microemulsion phase behavior, a reasonably aqueous stability, and a decent low IFT.


Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


2012 ◽  
Vol 21 ◽  
pp. 103-108 ◽  
Author(s):  
Hasnah Mohd Zaid ◽  
Noorhana Yahya ◽  
Noor Rasyada Ahmad Latiff

Application of nanotechnology in enhanced oil recovery (EOR) has been increasing in recent years. After secondary flooding, more than 60% of the original oil in place (OOIP) remains in the reservoir due to trapping of oil in the reservoir rock pores. One of the promising EOR methods is surfactant flooding, where substantial reduction in interfacial tension between oil and water could sufficiently displace oil from the reservoir. In this research, instability at the interfaces is created by dispersing 0.05 wt% ZnO nanoparticles in aqueous sodium dodecyl sulfate (SDS) solution during the core flooding experiment. The difference in the amount of particles adsorbed at the interface creates variation in the localized interfacial tension, thus induces fluid motion to reduce the stress. Four samples of different average crystallite size were used to study the effect of particle size on the spontaneous emulsification process which would in turn determine the recovery efficiency. From the study, ZnO nanofluid which consists of larger particles size gives 145% increase in the oil recovery as compared with the smaller ZnO nanoparticles. In contrast, 63% more oil was recovered by injecting Al2O3 nanofluid of smaller particles size as compared to the larger one. Formation of a cloudy solution was observed during the test which indicates the occurrence of an emulsification process. It can be concluded that ultralow Interfacial tension (IFT) value is not necessary to create spontaneous emulsification in dielectric nanofluid flooding.


Sign in / Sign up

Export Citation Format

Share Document