Electric Field Analysis with Space Charge Effects of ±1000kV DC Wall Bushing

2014 ◽  
Vol 1008-1009 ◽  
pp. 598-602
Author(s):  
Shu Min Sun ◽  
Yan Cheng ◽  
Xin Su

±1000kV DC wall bushing is a complex insulation system working in different conditions, such as DC, AC and polarity reversal. No matter what kind of conditions, the space charge effects on the electric field distribution of the bushing are remarkable. A finite element model for ±1000kV DC wall bushing is established based on space charge theory, to analyze the electric field distribution in different conditions, especially when polarity reversal occurs. The research results provide useful references for the electric field analysis and insulation optimization of UHV (ultra high voltage) DC wall bushings.

2012 ◽  
Vol 516-517 ◽  
pp. 1517-1520
Author(s):  
Jian Xun Hu ◽  
Gong Da Zhang ◽  
Hong Yu Zhang ◽  
Xiao Qin Zhang

Using the finite element analysis, this work analyzed the electric field distribution of 220kV transmission steel tower with double-circuit and composite material transmission tower with the same size, and compared the electric field effect of two materials transmission tower for surroundings. And this work compared the vertical and axial electric field distribution along transmission line of the two materials transmission tower. The results indicate the composite material tower can improve the environment of electric field near the transmission lines.


2010 ◽  
Vol 43 ◽  
pp. 546-550
Author(s):  
Kang Huang ◽  
Gen Qian ◽  
Qing Song Liang ◽  
Yu Feng Qu

The structure of current micro-machined gyroscope result in detection error and processing difficulty, which can be reduced by redesigning the structure such as a new type researched here to enhance the accuracy..The new structure for gyroscope and the method of driving force calculating for it is introduced in this paper. A 3D micro-machined gyroscope model has been built through CAD software, while finite model through CAE software. Besides, the driving structure has been analyzed to gain the size of driving force and electric-field distribution.


2014 ◽  
Vol 521 ◽  
pp. 321-329
Author(s):  
Quan Zhou ◽  
Li Tu ◽  
Rui Bie ◽  
Dong Feng ◽  
You Ping Fan

Currently, there is little experience about design of the 1-tower-double-circuit DC transmission lines. But the electromagnetic field distribution under its lines is complicated. In order to study the nominal electric field distribution of 1-tower-double-circuit DC transmission lines under different situations and a variety of operating conditions, the currents with analytical solutions are used to simulate the discrete or uneven distributed continuous charge. In the works within an acceptable range, the linear equations are built to solve simulation charge according to the electromagnetic theory. And ground nominal electric field of 1-tower-double-circuit DC transmission lines is calculated. The nominal electric field distribution extreme value extreme under different arrangements and nominal electric field distribution under a variety of operating conditions are analyzed comparatively. In this paper, the results show that the arrangements of lines have effects on the distribution characteristics of nominal electric field in normal condition. When monopole or bipolar or the bipolar of one line doesnt work, the change of nominal electric field is pronounced, but their extremes reduce.


2011 ◽  
Vol 291-294 ◽  
pp. 2352-2355
Author(s):  
Cheng Lin Liu ◽  
Ze Sun ◽  
Yun Zhao ◽  
Xing Fu Song ◽  
Gui Min Lu ◽  
...  

The electric field distribution was the main factor affecting on the current efficiency of electrolysis cell. So, the electric field distribution of magnesium electrolysis cell was studied to improve the current efficiency by two of main finite element softwares, COMSOL and ANSYS. The electric field distribution and its trends with the electrolyte change from 1.25m to 1.40m were calculated by using the two softwares. Form the results, the characteristics of COMSOL and ANSYS can be obtained. The conclusions of the paper will provided a significant reference for choose the appropriate software in practice process.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2271 ◽  
Author(s):  
Qingguo Chen ◽  
Jinfeng Zhang ◽  
Minghe Chi ◽  
Peng Tan ◽  
Wenxin Sun

The electric field distortion caused by space charge is an important factor affecting the operation reliability of oil–paper insulation in a converter transformer. To study the accumulation and decay characteristics of the space charge within oil-impregnated pressboard under DC and polarity reversal voltage, and consider the possible operating conditions of the converter transformer, the space charge behavior of oil-impregnated pressboard was measured by the pulsed electro-acoustic (PEA) method in the temperature range from −20 °C to 60 °C. The effect of temperature on the accumulation and decay characteristics of space charge is also analyzed. The space charge accumulated within the pressboard at low temperature is mainly homocharge injected by the electrode, while heterocharge formed by ion dissociation counteracts some of the homocharge at high temperature. Thus, the space charge of pressboard first increases, then decreases, with an increase in temperature. However, slow decay of the space charge causes severe distortion of the electric field distribution in the pressboard during voltage polarity reversal.


2012 ◽  
Vol 229-231 ◽  
pp. 807-810
Author(s):  
Li Zhang ◽  
Qing Min Li ◽  
Li Na Zhang ◽  
Yu Di Cong

±1000kV DC wall bushing under planning is a complex insulation system which bears the effects imposed by different working conditions. The electric field distribution is concentrated at the bushing outlet terminal, which might result in breakdown discharge especially when short-time abrupt conditions such as polarity reversal occur. In this paper, the finite element method is utilized to analyze electric field distribution and potential distribution of wall bushing during polarity reversal. Electric field distribution and potential distribution at the moment of polarity reversal are obtained, which provides value reference for the study of polarity reversal process.


2010 ◽  
Vol 27 (7) ◽  
pp. 077303 ◽  
Author(s):  
Xiao Chun ◽  
Zhang Ye-Wen ◽  
Zheng Fei-Hu ◽  
Wei Wen-Jie ◽  
An Zhen-Lian

Sign in / Sign up

Export Citation Format

Share Document