Mathematical Modelling of the Flow Structure and Heat Transfer in a Channel with a Porous Insert

2014 ◽  
Vol 1013 ◽  
pp. 257-263
Author(s):  
Oleg V. Matvienko ◽  
Aleksei Bubenchikov ◽  
Anastasiya Baigulova

The paper deals with the results of studying the flow structure and heat transfer in a cylindrical channel with a porous insert. While formulating the problem the space-averaged model of interpenetrating continuums was used. The modelled system is described by the equations of continuity, motion and thermal conductivity of a gas phase, as well as the equations of thermal conductivity for a porous backfill. The results of the research show that, due to the displacement of the gas flow from the wall region to the central part of the channel, in the initial flow section a low-temperature area is formed at the inner boundary of the porous layer. The temperature of the structural frame in the initial flow section also decreases because of its cooling by the flow displaced from the wall. In the downward flow direction heating-up of the structural frame occurs due to heat transfer from the gas flow moving in the axial zone. In addition, the structural frame performs the role of a thermal reservoir and, in turn, heats the gas flow in the porous layer.

2015 ◽  
Vol 13 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kun Lei ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

Abstract The heat conduction performance of the methanol synthesis reactor is significant for the development of large-scale methanol production. The present work has measured the temperature distribution in the fixed bed at air volumetric flow rate 2.4–7 m3 · h−1, inlet air temperature 160–200°C and heating tube temperature 210–270°C. The effective radial thermal conductivity and effective wall heat transfer coefficient were derived based on the steady-state measurements and the two-dimensional heat transfer model. A correlation was proposed based on the experimental data, which related well the Nusselt number and the effective radial thermal conductivity to the particle Reynolds number ranging from 59.2 to 175.8. The heat transfer model combined with the correlation was used to calculate the temperature profiles. A comparison with the predicated temperature and the measurements was illustrated and the results showed that the predication agreed very well with the experimental results. All the absolute values of the relative errors were less than 10%, and the model was verified by experiments. Comparing the correlations of both this work with previously published showed that there are considerable discrepancies among them due to different experimental conditions. The influence of the particle Reynolds number on the temperature distribution inside the bed was also discussed and it was shown that improving particle Reynolds number contributed to enhance heat transfer in the fixed bed.


Author(s):  
Nasir Memon ◽  
Yogesh Jaluria

An experimental study is undertaken to investigate the flow structure and heat transfer in a stagnation flow Chemical Vapor Deposition (CVD) reactor at atmospheric pressure. It is critical to develop models that predict flow patterns in such a reactor to achieve uniform deposition across the substrate. Free convection can negatively affect the gas flow as cold inlet gas impinges on the heated substrate, leading to vortices and disturbances in the normal flow path. This experimental research will be used to understand the buoyancy-induced and momentum-driven flow structure encountered in an impinging jet CVD reactor. Investigations are conducted for various operating and design parameters. A modified stagnation flow reactor is built where the height between the inlet and substrate is reduced when compared to a prototypical stagnation flow reactor. By operating such a reactor at certain Reynolds and Grashof numbers it is feasible to sustain smooth and vortex free flow at atmospheric pressure. The modified stagnation flow reactor is compared to other stagnation flow geometries with either a varied inlet length or varied heights between the inlet and substrate. Comparisons are made to understand the impact of such geometric changes on the flow structure and the thermal boundary layer. In addition, heat transfer correlations are obtained for the substrate temperature. Overall, the results obtained provide guidelines for curbing the effects of buoyancy and for improving the flow field to obtain greater film uniformity when operating a stagnation flow CVD reactor at atmospheric pressure.


Author(s):  
Jinliang Yuan ◽  
Masoud Rokni ◽  
Bengt Sunde´n

In this study, a fully three-dimensional calculation method has been further developed to simulate and analyze various processes in a thick anode duct. The composite duct consists of a porous layer, the flow duct and solid current connector. The analysis takes the electrochemical reactions into account. Momentum and heat transport together with gas species equations have been solved by coupled source terms and variable thermo-physical properties (such as density, viscosity, specific heat, etc.) of the fuel gases mixture. The unique fuel cell conditions such as the combined thermal boundary conditions on solid walls, mass transfer (generation and consumption) associated with the electrochemical reaction and gas permeation to / from the porous electrode are applied in the analysis. Results from this study are presented for various governing parameters in order to identify the important factors on the fuel cell performance. It is found that gas species convection has a significant contribution to the gas species transport from / to the active reaction site; consequently characteristics of both gas flow and heat transfer vary widely due to big permeation to the porous layer in the entrance region and species mass concentration related diffusion after a certain distance downstream the inlet.


2011 ◽  
Vol 312-315 ◽  
pp. 33-38
Author(s):  
M. Abkar ◽  
P. Forooghi ◽  
A. Abbassi

In this paper, forced convection in a channel lined with a porous layer is investigated. The main goal is to assess the effect of local thermal non-equilibrium condition on overall heat transfer in the channel. The effects of thermal conductivity of solid and thickness of porous layer are also studied. Flow assumed to be laminar and fully developed. The Brinkman-Forchheimer model for flow as well as the two equation energy model is used. The results showed that when the problem tends to local thermal equilibrium condition, heat transfer is enhanced due to heat conduction through solid phase. Another factor, which can facilitate the heat transfer, is the increase of the thermal conductivity of solid material. This trend is sensitive to the thickness of porous layer and modified Biot number, which is a measure (criterion) of local fluid to solid heat transfer. As thickness and modified Biot number increase, the Nusselt number becomes more sensitive to the thermal conductivity ratio.


2021 ◽  
Vol 13 (2) ◽  
pp. 91-102
Author(s):  
Viacheslav KRAEV

Hydraulic and heat transfer processes play a very important role in the design and prototyping of aerospace technology. Unsteady conditions are the peculiarity of mostly aerospace systems. Flow acceleration and deceleration may significantly affect the heat transfer and hydrodynamic process in channels of aerospace systems. For unsteady process modeling, a fundamental research of unsteady hydrodynamic turbulent flow structure., Moscow Aviation Institute National Research University (MAI) has been building unsteady turbulent flow structures since 1989. An experimental facility was designed to provide gas flow acceleration and deceleration. Experimental data of a turbulent gas flow structure during flow acceleration and flow deceleration are presented. The frequency spectra of axial and radial velocity pulsations are based on experimental data. The results of experimental turbulent flow research demonstrate the fundamental hydrodynamic unsteadiness influence on the flow structure. The main results of the flow acceleration and deceleration experimental research show that there are tangible differences from the steady flow structure. The analysis of unsteady conditions influence on the turbulent pulsations generation and development mechanisms is presented. The results show the unsteady conditions influence onto turbulent vortexes disintegration tempo. The present paper describes a method of experimental research, methodology of data processing and turbulent accelerated and decelerated flow spectra results.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012157
Author(s):  
V V Lukashov ◽  
V S Naumkin

Abstract The paper solves the problem of thermal conductivity inside a flat plate under the impact of a hot jet of nitrogen impinging from one side and cooled by a gas flow from the other side. In this formulation of the problem, there may be local maxima and minima of the temperature inside the plate, caused by an uneven distribution of heat fluxes along the plate.


Author(s):  
Guogang Yang ◽  
Wei Wei ◽  
Jinliang Yuan ◽  
Danting Yue ◽  
Xinrong Lv

A composite combustion duct in compact methane reformers consists of a gas flow channel, porous layer and solid plates. There are various transport processes appeared, such as gas flow in the channel, multi-component species convection/diffusion in the porous layer, and heat transfer. They are further coupled by methane catalytic combustion in the porous layer, which affects the reformer overall performance and reliability. By three dimensional CFD approach, the reacting gas flow and heat transfer processes were numerically studied. The reformer conditions such as mass balances associated with the chemical reaction and gas permeation to/from the porous layer are implemented in the calculation. The results reveal that the catalytic combustion reaction is confined in a thin porous catalyst area close to fuel gas flow duct. Transport processes of the fuel gas species and temperature distribution are significantly affected by the reactions.


2008 ◽  
Author(s):  
Jinliang Yuan ◽  
Guogang Yang ◽  
Bengt Sunde´n

Thermo-mechanical failure of components in a compact steam reformer is a major obstacle to bring this technology to real-life applications. The probability of material degradation and failure depends strongly on the convective heat transfer in the fuel gas flow duct and local temperature distribution in multifunctional materials. It is of significant importance to accurately predict the convective heat transfer coupled with catalytic reactions within the reformer components. In this paper, the simulation and analysis of combined chemical reactions and transport processes are conducted for a duct relevant for compact design steam reformer, which consists of a porous layer for the catalytic reforming reactions of methane, the fuel gas flow duct and solid plates. A fully three-dimensional computational fluid dynamics (CFD) approach is applied to calculate transport processes and effects of thermal conductivities of the involved multi-functional materials on convective heat transfer/temperature distributions, in terms of interface temperature gradients/heat fluxes and Nusselt numbers. The steam reformer conditions such as mass balances associated with the reactions and gas permeation to/from the porous anode are implemented in the calculation. The results show that the classic thermal boundary conditions (either constant heat flux or temperature, or combined one) may not be applicable for the interfaces between the fuel flow duct and solid plate/porous layer.


2011 ◽  
Vol 133 (8) ◽  
Author(s):  
Nasir Memon ◽  
Yogesh Jaluria

An experimental study is undertaken to investigate the flow structure and heat transfer in a stagnation flow chemical vapor deposition (CVD) reactor at atmospheric pressure. It is critical to develop models that predict flow patterns in such a reactor to achieve uniform deposition across the substrate. Free convection can negatively affect the gas flow as cold inlet gas impinges on the heated substrate, leading to vortices and disturbances in the normal flow path. This experimental research will be used to understand the buoyancy-induced and momentum driven flow structure encountered in an impinging jet CVD reactor. Investigations are conducted for various operating and design parameters. A modified stagnation flow reactor is built where the height between the inlet and substrate is reduced when compared with a prototypical stagnation flow reactor. By operating such a reactor at certain Reynolds and Grashof numbers, it is feasible to sustain smooth and vortex free flow at atmospheric pressure. The modified stagnation flow reactor is compared with other stagnation flow geometries with either a varied inlet length or varied heights between the inlet and substrate. Comparisons are made to understand the impact of such geometric changes on the flow structure and the thermal boundary layer. In addition, heat transfer correlations are obtained for the substrate temperature. Overall, the results obtained provide guidelines for curbing the effects of buoyancy and for improving the flow field to obtain greater film uniformity when operating a stagnation flow CVD reactor at atmospheric pressure.


Sign in / Sign up

Export Citation Format

Share Document