The Influence of Nano-Montmorillonite on High Temperature Performance of Asphalt

2014 ◽  
Vol 1015 ◽  
pp. 283-286 ◽  
Author(s):  
Zeng Ping Zhang ◽  
Xing Jiao Wu ◽  
Xiao Fen Nan ◽  
Meng Jia ◽  
Ji Cheng Han

In order to increase the life of bituminous pavement, quality of bitumen needs to be enhanced and modified. Different dosages of nano-organic montmorillonite (nano-OMMT) were used as modifier for base asphalt. The effect of the contents of nano-OMMT on high temperature performance of asphalt was investigated. Experimental results showed that with the increase of nano-OMMT of content, the high temperature performance of asphalt was gradually improved. And the high temperature sensitivity of asphalt is also enhanced. The nano-OMMT modified asphalt is expected to possess superior rutting resistance to the base asphalt.

2020 ◽  
Vol 165 ◽  
pp. 04078
Author(s):  
Yongmei Guo ◽  
Yadong Jie

In order to investigate the effect of organic montmorillonite (OMMT) and its content on properties of high-viscosity modified asphalt, a series of laboratory tests were carried out through zero shear viscosity (ZSV) at 60 °C, rutting factor, ductility at 5 °C, and fatigue factor to analyze high-temperature, low-temperature and anti-fatigue properties of high-viscosity modified asphalt with different OMMT contents. The results show that OMMT/high-viscosity modifier (HVM) composite modification can improve obviously high-temperature performance and fatigue resistance of high-viscosity modified asphalt, but the best improvement effect can be achieved only when adding proper amount of OMMT. The addition of a small amount of OMMT has little effect on low-temperature performance of high-viscosity modified asphalt, but when the content of OMMT exceeds 4%, its low-temperature performance will decrease significantly. The addition of OMMT can improve the temperature sensitivity of high-viscosity modified asphalt’s high-temperature performance, but reduces the temperature sensitivity of its fatigue resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Luchuan Chen ◽  
Wenjun Gu ◽  
Xuanyu Zhang

Nanoparticles have been widely adopted to improve the high-temperature performance of asphalt binder. However, the influence of moisture on high-temperature performance is not clear. Hence, the water absorption performance of the nano-SiO2-modified asphalt concrete is investigated. Based on this, to further analyze the pavement performance of the nano-SiO2-modified asphalt concrete, the coupled effects of high-temperature, moisture content, and nanoparticles content on the rutting resistance of the nano-SiO2-modified asphalt concrete are tested and revealed in this study. Results show that temperature has the most significant influence on the water absorption performance of the nano-SiO2-modified asphalt concrete. The rutting resistance of the nano-SiO2-modified asphalt concrete decreases as temperature and moisture content increase, especially for the temperature. The dynamic stability at the same temperature condition decreases approximately linearly as moisture content increases. The effect of the nano-SiO2 content is the most nonobvious.


2013 ◽  
Vol 671-674 ◽  
pp. 1277-1281 ◽  
Author(s):  
Wen Tong Huang ◽  
Guo Yuan Xu

To evaluate the high temperature properties and rheological behavior of Iranian Rock Asphalt(IRA), convectional test and temperature scanning test over modified asphalt containing A-70 asphalt as base asphalt and IRA as different amount were conducted. The results show 1) an increase in asphalt binder’s capability of deformation resistance under high temperature, decreases both in asphalt binder’s temperature sensitivity and low-temperature performance; 2)an increase in anti-rutting factor, a decrease on loss tangent value, an improvement of dynamic viscosity. Thus the asphalt binder’s high temperature performance is greatly improved and anti-rutting capability strengthened.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3089
Author(s):  
Peilei Zhou ◽  
Wensheng Wang ◽  
Lili Zhu ◽  
Haoyun Wang ◽  
Yongming Ai

This study aims to investigate the performance evolution and mechanism of asphalt under action of chloride salt erosion. Asphalt samples soaked with five different snow melting chloride salt concentrations were taken as the research object. Then, the high-temperature performance, low-temperature performance, temperature sensitivity and asphalt–aggregate adhesion property of asphalt samples were carried out. Additionally, Fourier transform infrared spectroscopy (FTIR) was used to explore the mechanism of chloride salt erosion on asphalt. Test results showed the linear variation relationships of high-temperature performance, low-temperature performance and temperature sensitivity with chloride salt concentrations. The high-temperature performance of asphalt would be improved by chloride snowmelt salt. With the increase in the chloride salt solution concentration, the low-temperature performance of asphalt became worse, and the temperature sensitivity increased. Moreover, after the effect of the chloride salt solution, the asphalt–aggregate adhesion property decreased with the increase in the chloride salt solution concentration. It is necessary to control the amount of chloride snowmelt salt in the actual snow removal projects. Finally, based on Fourier transform infrared spectroscopy, the mechanism of chloride salt erosion on asphalt was preliminarily explored. With the increase in the chloride salt solution concentration, the proportion of light components (saturated fraction, aromatic fraction) in asphalt decreased, and the proportion of heavy components (resin and asphaltene) with good thermal stability increased.


Author(s):  
Z. Mutsafi ◽  
K. Shimanovich ◽  
V. Kairys ◽  
R. Shima-Edelstein ◽  
Y. Roizin ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (38) ◽  
pp. 23751-23758 ◽  
Author(s):  
Xin Wang ◽  
Xiangping Li ◽  
Lihong Cheng ◽  
Sai Xu ◽  
Jiashi Sun ◽  
...  

Er3+ concentration had significant influences on temperature sensitivity. The sample with a low concentration of Er3+ had high temperature sensitivity.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Sign in / Sign up

Export Citation Format

Share Document