Preparation and Characterization of TiO2/Coconut-Activated Carbon Photocatalytic Materials

2014 ◽  
Vol 1015 ◽  
pp. 667-670
Author(s):  
Chuan Bao Zhao ◽  
Dong Mei Shi ◽  
Bo Tao Lin ◽  
Yan Qiang Jia

Using Ti (OC4H9)4 as the precursor,and GAC as carrier, making use of technology of hydrolyzation and natural assembling,TiO2/GAC composite material was preparated at the lower temperature.The characterization of obtained TiO2 /Coconut-Activated Carbon’scrystal structure and appearance by XRD and SEM.The adsorption capacity and photocatalytic performance on phenol were measured.Results show that TiO2/GAC surface was well-distributed and remains a little interspace.A nanocrystal TiO2 aerogel size is without 30nm.The sample shows lower adsorption compared to GAC.But photocatalytic efficiency was higher than GAC under the exposure of the sunlight or the violet.

2020 ◽  
Vol 841 ◽  
pp. 273-277
Author(s):  
Ariany Zulkania ◽  
Muhammad Iqbal ◽  
Syamsumarlin

In this study, two types of adsorbent including activated carbon and bio-sorbent were produced from Palm fiber wastes (PFW), which were activated by phosphoric acid. The influence of adsorbent type and phosphoric acid concentration on methylene blue adsorption was investigated. The most optimum adsorbent was determined based on adsorption capacity and removal percentage of each adsorbent. The result shows that 9.984 mg/g of adsorption capacity and 99.84% of removal percentage were achieved in 90 minutes’ adsorption, which demonstrates the huge potential of bio-sorbent and was chosen to be the most optimum adsorbent based on methylene blue removal. The characterization of bio-sorbent was then investigated using FTIR and SEM. FTIR result shows that bio-sorbent contains cellulose which affected the adsorption process while SEM result shows the cleaner pores and surface compared to bio-sorbent before activation.


RSC Advances ◽  
2018 ◽  
Vol 8 (43) ◽  
pp. 24665-24672 ◽  
Author(s):  
Chencheng Zhang ◽  
Pingfang Han ◽  
Xiaoping Lu ◽  
Qinghui Mao ◽  
Jiangang Qu ◽  
...  

Herein, we describe the hydrothermal immobilization of BiVO4 on activated carbon fibers, using Reactive Black KN-B photocatalytic performance evaluation and establishing the experimental conditions yielding maximalphotocatalytic activity.


2019 ◽  
Vol 41 (1) ◽  
pp. 62-62
Author(s):  
Farida Bouremmad Farida Bouremmad ◽  
Abdennour Bouchair Abdennour Bouchair ◽  
Sorour Semsari Parapari Sorour Semsari Parapari ◽  
Shalima Shawuti and Mehmet Ali Gulgun Shalima Shawuti and Mehmet Ali Gulgun

Biosorbents can be an alternative to activated carbon. They are derived from agricultural by-products or aquatic biomass. They are low cost and they may have comparable performances to those of activated carbon. The present study focuses on the characterization of the Corallina Elongata (CE) alga and its adsorption performance for Methylene Blue (MB), this alga is found in abundance at the Mediterranean coast of the city of Jijel in eastern Algeria. The dried alga was characterized using various characterization techniques such as DTA, TG, FTIR, XRD, SEM and EDX, which showed that the material consists essentially of a calcite containing magnesium. Batch adsorption studies were carried out and the effect of experimental parameters Such as pH, initial dye concentration, temperature, adsorbent dose and contact time, on the adsorption of MB was studied. The kinetic experimental data were found to conform to the pseudo-second-order model with good correlation and equilibrium data were best fitted to The Langmuir model, with a maximum adsorption capacity of 34.4 mg/g. The adsorption isotherms at various temperatures allowed the determination of certain thermodynamic parameters (ΔG, ΔH and ΔS). Finally, the adsorption results showed a good affinity between CE and MB with a high adsorption capacity.


2022 ◽  
Author(s):  
Yu Zhu ◽  
ChuWen Li ◽  
DongMei Hou ◽  
Guicheng Gao ◽  
WeiQi Luo ◽  
...  

Abstract BiFeO3 is a photocatalyst with excellent performance. However, its applications are limited due to its wide bandgap. In this paper, MIL-101(Fe)@BiOI composite material is synthesized by hydrothermal method and then calcined at high temperature to obtain BiFeO3@Bi5O7I composite material with high adsorption capacity. Among them, An n-n heterojunction is formed, which improves the efficiency of charge transfer, and the recombination of photo-generated electrons and holes prevents the improvement of photocatalytic efficiency and stability. The result of photocatalytic degradation of tetracycline under visible light irradiation showed, BiFeO3@Bi5O7I (1:2) has the best photodegradation effect, with a removal rate of 86.4%, which proves its potential as a photocatalytic degradation material.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2485 ◽  
Author(s):  
Gang Liao ◽  
Wu Yao ◽  
Junqing Zuo

A zeolite/TiO2 composite (ZTC) was applied to prepare a high-quality photocatalytic cement-based material (PCM). The acetone degradation experiment and micro measurements including XRD(X-Ray Diffractometer), SEM-EDS(Scanning Electron Microscope-Energy Dispersive Spectrometer), BET(BET Specific Surface Area Tester), FTIR(Fourier Transform Infrared Spectrometer) were conducted to characterize the photocatalytic efficiency and physicochemical properties of PCM, respectively. Results show that TiO2 particles disperse on the surface of a PCM homogeneously and provide abundant active sites for photocatalytic reactions. Compared to a normal photocatalytic cement-based material (NPCM), the TiO2 content of a PCM is lower and its photocatalytic efficiency is higher. The ZTC frees TiO2 particles from the impacts of cement hydration products and increases the adsorption volume of acetone. The photocatalytic performance of the PCM was stable after repeated tests. Using the ZTC as a photocatalyst has a prominent effect on the photocatalytic performance of the PCM.


2018 ◽  
Vol 6 (4) ◽  
pp. 45-49
Author(s):  
Indah Sari ◽  
Uchi Inda Purnamasari ◽  
M. Turmuzi Lubis

This study aimed to determine the best adsorption capacity, compounds contained in activated carbon and burn off that produced. In this study, activated carbon have been prepared from the bark of Salacca zalacca by physically activating using a microwave. The 70 gram  bark of Salacca zalaccawas pyrolised in a furnace with flowing gas N2 with temperature 500 oC for 120 minutes followed by microwave activation at 2450 MHz with power 600 W, 800 W and 1000 W for 20 minutes, 40 minutes and 60 minutes. The results showed the best burn off on microwave power 1000 W with 60 minutes activation time of 90,25%. The best activated carbon adsorption capacity at 800 W microwave power for 20 minutes is 19,96 mg/g. The best allowanced percentage at 800 W microwave power with 20 minutes activation time is 99,82%. Characterization of Fourier Transform Infra-Red (FITR) showed the presence of C=O (carbonyl) bonds indicating the presence of carbon-active substances. After pyrolysis forms a C≡C (Alkuna) bond which indicated more carbon was produced. This is supported by the characterization of Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) showing the surface morphology of rough and irregular activated carbon and the amount of carbon and oxide content on activated carbon of 44,44% and 28,54% sequentially.


2013 ◽  
Vol 341-342 ◽  
pp. 157-161
Author(s):  
Yang Lin Liu ◽  
Xue Chen Duan ◽  
Yan Yan Liu

The surface chemistry method is used to produce Zinc Aluminium oxide (ZAO) particle surface which modifying tubular TiO2 and can produce nanotubes composite material of ZAO/TiO2. The influence of different atom proportionings, aluminum doping amount as well as the contents of Zn and other conditions on the production of composite material's surface morphology, microstructure and photocatalytic performance were Study with XRDSEMTEM and other characterization means. The experiments indicated when Zn:Ti=1:4(a.t.),it has the best catalytic effect and the methyl orange degradation rate can reach 95% at 50min.


Sign in / Sign up

Export Citation Format

Share Document