Optimization of Molding Process Parameters for the CPU Fan Based on Orthogonal Experiment

2010 ◽  
Vol 102-104 ◽  
pp. 7-11
Author(s):  
Cong Da Lu ◽  
Yi Lian Zhang ◽  
Shao Fei Jiang ◽  
Guo Zhong Chai

In this paper, the main molding process parameters which are relevant to warpage were optimized by orthogonal experiment and finite element software MPI. The result shows that we can get a series of optimized parameters and know how much each process parameter influences the warpage by combining orthogonal experiments with simulation experiments using MPI, while fewer experiments are needed. Verified by MPI, such series of optimized parameters can keep the warpage in a low level and completely meet the standard of the product.

Author(s):  
John Martin

The pilger process is a cold-worked mechanical process that combines the elements of extrusion, rolling, and upsetting for the formation of thin-walled tubes. This complex manufacturing process relies on the results of trial and error testing programs, experimental parameter sensitivity studies, and prototypical applications to advance the technology. This finite element modelling effort describes the methods, models, and assumptions used to assess the process parameters used to manufacture thin-walled tubing. The modelling technique breaks down the manufacturing process into smaller computer generated models representing fundamental process functions. Each of these models is linked with the overall process simulation. Simplified assumptions are identified and supporting justifications provided. This work represents proof of principle modelling techniques, using large deformation, large strain, finite element software. These modelling techniques can be extended to more extensive parameter studies evaluating the effects of pilger process parameter changes on final tube stress and strain states and their relationship to defect formation/propagation. Sensitivity studies on input variables and the process parameters associated with one pass of the pilger process are also included. The modelling techniques have been extended to parameter studies evaluating the effects of pilger process parameter changes on tube stress and strain states and their relationship to defect formation. Eventually a complex qualified 3-D model will provide more accurate results for process evaluation purposes. However, the trends and results reported are judged adequate for examining process trends and parameter variability.


2014 ◽  
Vol 602-605 ◽  
pp. 326-329
Author(s):  
Bo Zhang ◽  
Xiao Ping Liang ◽  
Jun Feng Fu

A two-dimensional finite element mathematical model of rough rolling in "1+4" hot continuous rolling of 5052 aluminum alloy was developed by using finite element software Deform, The temperature and effective strain distribution of the strip in different process parameters has been investigated in by simulating the mathematical model in different simulation conditions. The process parameters such as rolling speed, initial temperature, contact heat transfer coefficient between work roll and strip have been considered. The simulation conditions were built by the means of orthogonal experiment. The process parameters, which can make the temperature and effective strain of the strip in a relatively uniformity distribution, were achieved by analyzing the simulation results under different simulation conditions. To judge the uniformity of the temperature and effective strain distribution of the strip quantitative in different simulation conditions, standard deviation has been used as a criterion.


2012 ◽  
Vol 201-202 ◽  
pp. 1182-1185
Author(s):  
Hua Bo He ◽  
Xue Wen Zhu

By the combination of orthogonal experiments and moldflow simulation analysis, the warpage of a food tray is analyzed under the combined effects of multi-molding process parameters. By this method, it can gain the experiment data which can basically reflect the overall situation using fewer number of simulation analysis. In addition, the effects degree of different molding process parameters for warpage are researched, and the optimized parameter combination is obtained. It can avoid the one-sidedness of individual analysis of the various factors and solve the unreasonable appearance of process parameter settings. With the help of results, it can fasten the mold developing schedule, thus shorten the cycle of product development, and improve the quality of products and the competitive ability of enterprise.


2011 ◽  
Vol 101-102 ◽  
pp. 254-257
Author(s):  
Hua Bo He ◽  
Fei Lin Wu ◽  
Yi Min Deng

By the combination of orthogonal experiments and moldflow simulation analysis, the warpage of a thin-wall injection molded parts is analyzed under the combined effects of multi-molding process parameters. By this method, it can gain the experiment data which can basically reflect the overall situation using fewer number of simulation analysis. In addition, the effects degree of different molding process parameters for warpage are researched, and the optimized parameter combination is obtained. It can avoid the one-sidedness of individual analysis of the various factors and solve the unreasonable appearance of process parameter settings. With the help of results, it can fasten the mold developing schedule, thus shorten the cycle of product development, and improve the quality of products and the competitive ability of enterprise.


2012 ◽  
Vol 497 ◽  
pp. 245-249
Author(s):  
Dao Cheng Zhang ◽  
Ke Jun Zhu ◽  
Yong Jian Zhu ◽  
Shao Hui Yin ◽  
Jian Wu Yu

Glass lens molding is a high-volume fabrication method for producing optical components. In this paper, combined with the orthogonal test method and finite element method (FEM) simulation, the coupled thermo-mechanical analysis was carried out to analyze the key process factors. In order to reduce the testing time, an orthogonal test with three sets of level factors and three parameters is conducted to obtain the optimal molding process parameters. The result shows that the most significant parameter is molding velocity, the other effect parameters are molding temperature and friction coefficient. According to the previous analysis of orthogonal experiment, it is shown that the best optimal finishing process parameters were A2B1C1.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Youmin Wang ◽  
Zhaozhe Zhu ◽  
Lingfeng Tang ◽  
Qinshuai Jiang

In order to put forward the theoretical calculation formula for the compression force of the compression mold of the trunk trim panel, obtain the influence trend of the process parameters on the molding quality of the trunk trim panel, and obtain the optimal process parameters combination for the compression molding of the trunk trim panel, four process parameters, the heating temperature, time, compression pressure, and holding time, which affected the compression molding, were selected as the level factors; the maximum thinning rate, maximum thickening rate, and shrinkage rate of the trunk trim panel were selected as evaluation indicators and orthogonal experiments were designed and completed; the comprehensive weighted scoring method was used to obtain the comprehensive score results and obtain the comprehensive evaluation indicators of the best combination of process parameters of trunk trim panel; BP neural network and genetic algorithm were used to study the change trend of the evaluation indicators of trunk trim panel with the changes of process parameters; based on the optimal process parameter combination and the established neural network’s prediction function, the maximum thinning rate, maximum thickening rate, and shrinkage rate under a single process parameter change could be predicted, and the influence of a single process parameter on the maximum thinning rate, maximum thickening rate, and shrinkage rate could be obtained; the process parameters were optimized, and a maximum thinning rate of 28%, a maximum thickening rate of 4.3%, and a shrinkage rate of 0.8% were obtained; the optimal molding process parameters of the trunk trim panel were heating temperature of 209°C, heating time of 62 s, molding pressure of 14 kPa, and holding pressure time of 49 s; after optimization, the maximum shrinkage rate was 28.0880%, the maximum thickening rate was 44.3264%, and the shrinkage rate was 0.8901%; according to the optimal process parameters, the quality of the trunk trim panel was very good, which met the production quality requirements.


2012 ◽  
Vol 271-272 ◽  
pp. 452-456
Author(s):  
Shu Feng Sun ◽  
Ping Ping Wang ◽  
Xin Wu ◽  
Sen Lin

Machining process parameters are main factors influencing machining quality and efficiency. Finite element models of tool and part are set up using finite element software Deform-3D. Variety laws of cutting force and temperature under different process parameters are simulated. The results are analyzed. Cutting force grows obviously with the growth of cutting speed (vc). However, cutting force fluctuates and decreases with the growth of cutting depth (ap) indicating the phenomenon of work hardening. Cutting force fluctuates and grows with the growth of feed rate ( f ). But the influence of feed rate ( f ) to cutting force is smaller than that of cutting speed (vc). The growths of the above mentioned three process parameters all cause the rise of temperature. Machining simulation research provides the optimum process parameters for CNC programming.


2008 ◽  
Vol 44-46 ◽  
pp. 85-89
Author(s):  
J.J. Jia ◽  
Zheng Hao Ge ◽  
Y. Li

For injection mold with core, during the injection molding process, the pressure on the core is usually uneven and will cause the core to deform. In this paper, on the basis of some predigestions and assumptions of the model, formulas for forecasting the deformation of the circular cross-section and the rectangular cross-section cores under three different injection ways are analyzed. The theoretical analysis results of a core with special section are validated through finite element software. At the end, some suggestions are given to minish the core deformation when the calculation value is too large.


2011 ◽  
Vol 704-705 ◽  
pp. 183-190
Author(s):  
Ze Hao Hu ◽  
Wei Wei ◽  
Juan Liu ◽  
Kun Liu

In this paper, the numerical simulation and calculation of injection molding process are taken in the Moldflow software. The BP artificial neural network combining with the orthogonal experiment design method is used to set up the injection molding process agent model, genetic algorithms are applied to realize global optimization, finally, the optimal combination of process parameters of each quality indicators is obtained.


Sign in / Sign up

Export Citation Format

Share Document