Numerical Simulation of Temperature and Effective Strain Distribution of Aluminum Alloy in the Whole Rough Rolling Process

2014 ◽  
Vol 602-605 ◽  
pp. 326-329
Author(s):  
Bo Zhang ◽  
Xiao Ping Liang ◽  
Jun Feng Fu

A two-dimensional finite element mathematical model of rough rolling in "1+4" hot continuous rolling of 5052 aluminum alloy was developed by using finite element software Deform, The temperature and effective strain distribution of the strip in different process parameters has been investigated in by simulating the mathematical model in different simulation conditions. The process parameters such as rolling speed, initial temperature, contact heat transfer coefficient between work roll and strip have been considered. The simulation conditions were built by the means of orthogonal experiment. The process parameters, which can make the temperature and effective strain of the strip in a relatively uniformity distribution, were achieved by analyzing the simulation results under different simulation conditions. To judge the uniformity of the temperature and effective strain distribution of the strip quantitative in different simulation conditions, standard deviation has been used as a criterion.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 166
Author(s):  
Jiansheng Xia ◽  
Jun Zhao ◽  
Shasha Dou

There are many typical symmetric large plastic deformation problems in aluminum alloy stamping. Warm stamping technology can improve the formability of materials and obtain parts with high-dimensional accuracy. Friction behavior in the stamping process is significant for the forming quality. An accurate friction coefficient is helpful in improving the prediction accuracy of forming defects. It is hard to obtain a unified and precise friction model through simple experiments due to the complicated contact conditions. To explore the effect of friction behavior on the forming quality, warm friction experiments of the AA6061 aluminum alloy and P20 steel with different process parameters were carried out using a high-temperature friction tester CFT-I (Equipment Type), including temperatures, the interface load, and sliding speeds. The variation curves of the friction coefficient with various parameters were obtained and analyzed. The results show that the friction coefficient increases with temperature and decreases with the sliding speed and load. Then, the influences of process parameters on the surface morphology of the samples after friction were observed by an optical microscope; adhesive wear occurred when the temperature increased, and the surface scratch increased and deepened with the increase in the load. Finally, the friction coefficient models of the speed and load were established by analyzing the data with Original software. Compared with the experimental and the finite element analysis results of the symmetrical part, the errors of the velocity friction model in thickness and springback angle are less than 4% and 5%, respectively. The mistakes of the load friction model are less than 6% and 7%, respectively. The accuracy of the two friction models is higher than that of the constant friction coefficient. Therefore, those coefficient models can effectively improve the simulation accuracy of finite element software.


2010 ◽  
Vol 102-104 ◽  
pp. 7-11
Author(s):  
Cong Da Lu ◽  
Yi Lian Zhang ◽  
Shao Fei Jiang ◽  
Guo Zhong Chai

In this paper, the main molding process parameters which are relevant to warpage were optimized by orthogonal experiment and finite element software MPI. The result shows that we can get a series of optimized parameters and know how much each process parameter influences the warpage by combining orthogonal experiments with simulation experiments using MPI, while fewer experiments are needed. Verified by MPI, such series of optimized parameters can keep the warpage in a low level and completely meet the standard of the product.


2016 ◽  
Vol 851 ◽  
pp. 163-167
Author(s):  
Dong Yan Lin ◽  
Yi Li

The hydroforming process of the aluminum alloy panel was simulated by the software DYNAFORM. The effects of process parameters (blank holder force, depth of panel and height of draw bead) on springback of the aluminum alloy were investigated. The max springback of the panel was analyzed by weighted scoring method. Then the process parameters were synthetically optimized for the max positive and negative springback. The results showed that the height of draw bead affects obviously the comprehensive springback of the panel. The optimization of the process parameters obtained by the orthogonal experiment can effectively reduce the max springback of the panel.


2004 ◽  
Vol 471-472 ◽  
pp. 790-794 ◽  
Author(s):  
Li Fa Han ◽  
Wei Xia ◽  
Yuan Yuan Li ◽  
Wei Ping Chen

This paper presents an investigation on the surface roughness of burnished hypereutectic Al-Si alloy ¾ a widely used light-weight and wear resistant material in automobile, electric and aircraft industries. Based on the techniques of Taguchi, an orthogonal experiment plan with the analysis of variance (ANOVA) is performed and a second-order regressive mathematical model is established. Meanwhile, the influence of process parameters on surface roughness and its mechanism are discussed. From the experiments, it is found that burnishing process is effective to decrease surface roughness of hypereutectic Al-Si alloy components, in which, all input parameters have a significant effect on the surface roughness. To achieve a small surface roughness, the optimum process parameters are recommended.


2011 ◽  
Vol 189-193 ◽  
pp. 3778-3781
Author(s):  
Yin Fang Jiang ◽  
Lei Fang ◽  
Zhi Fei Li ◽  
Zhen Zhou Tang

Laser shock processing is a technique similar to shot peening that imparts compressive residual stresses in materials for improved fatigue resistance. Finite element analysis techniques have been applied to predict the residual stresses from Laser shock processing. The purpose of this paper is to investigate of the different sheet thickness interactions on the stress distribution during the laser shock processing of 7050-T7451 aluminum alloy by using the finite element software. The results indicate that the sheet thickness has little effects on the compression stress in the depth of sheet, but great impacts on the reserve side.


Author(s):  
John Martin

The pilger process is a cold-worked mechanical process that combines the elements of extrusion, rolling, and upsetting for the formation of thin-walled tubes. This complex manufacturing process relies on the results of trial and error testing programs, experimental parameter sensitivity studies, and prototypical applications to advance the technology. This finite element modelling effort describes the methods, models, and assumptions used to assess the process parameters used to manufacture thin-walled tubing. The modelling technique breaks down the manufacturing process into smaller computer generated models representing fundamental process functions. Each of these models is linked with the overall process simulation. Simplified assumptions are identified and supporting justifications provided. This work represents proof of principle modelling techniques, using large deformation, large strain, finite element software. These modelling techniques can be extended to more extensive parameter studies evaluating the effects of pilger process parameter changes on final tube stress and strain states and their relationship to defect formation/propagation. Sensitivity studies on input variables and the process parameters associated with one pass of the pilger process are also included. The modelling techniques have been extended to parameter studies evaluating the effects of pilger process parameter changes on tube stress and strain states and their relationship to defect formation. Eventually a complex qualified 3-D model will provide more accurate results for process evaluation purposes. However, the trends and results reported are judged adequate for examining process trends and parameter variability.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2866
Author(s):  
Jintong Liu ◽  
Anan Zhao ◽  
Piao Wan ◽  
Huiyue Dong ◽  
Yunbo Bi

Interlayer burrs formation during drilling of stacked plates is a common problem in the field of aircraft assembly. Burrs elimination requires extra deburring operations which is time-consuming and costly. An effective way to inhibit interlayer burrs is to reduce the interlayer gap by preloading clamping force. In this paper, based on the theory of plates and shells, a mathematical model of interlayer gap with bidirectional clamping forces was established. The relationship between the upper and lower clamping forces was investigated when the interlayer gap reaches zero. The optimization of the bidirectional clamping forces was performed to reduce the degree and non-uniformity of the deflections of the stacked plates. Then, the finite element simulation was conducted to verify the mathematical model. Finally, drilling experiments were carried out on 2024-T3 aluminum alloy stacked plates based on the dual-machine-based automatic drilling and riveting system. The experimental results show that the optimized bidirectional clamping forces can significantly reduce the burr heights. The work in this paper enables us to understand the effect of bidirectional clamping forces on the interlayer gap and paves the way for the practical application.


2013 ◽  
Vol 465-466 ◽  
pp. 1361-1364
Author(s):  
Tung Sheng Yang ◽  
Jia Yu Deng ◽  
Jie Chang

This study applies the finite element method (FEM) to predict maximum forging load and effective strain in internal helical gear forging. Maximum forging load and effective strain are determined for different process parameters, such as modules, number of teeth, and die temperature of the internal helical gear forging, using the FEM. Finally, the prediction of the power requirement for the internal helical gear warm forging is determined. Therefore, the maximum forming force and strain distribution will be prediction for the different parameters of helical gear worm forging.


Author(s):  
V. S. Senthil Kumar ◽  
U. Mohammed Iqbal

Twist extrusion is a severe plastic deformation in which the rectangular shaped work piece is extruded through a die with a twist channel. In this work the twist extrusion process of AA6082 T6 aluminum samples were carried out to investigate the effects of process parameters like temperature and deformation passes on the microstructure homogeneity. The results indicate that the grain refinement of AA 6082 T6 aluminum alloy leads to inhomogeneous microstructure after one twist extrusion pass. On further extrusion passes the inhomogeneity in the microstructure is found to be disappeared. The homogeneity of the distribution of the deformation was confirmed by micro hardness testing. Finite element modeling has been performed in DEFORM 3D software for determining the homogeneity of the effective strain distribution which agreed well with the experimental values.


Sign in / Sign up

Export Citation Format

Share Document