NC Turning Process Parameters Optimization Based on Simulation Software

2012 ◽  
Vol 271-272 ◽  
pp. 452-456
Author(s):  
Shu Feng Sun ◽  
Ping Ping Wang ◽  
Xin Wu ◽  
Sen Lin

Machining process parameters are main factors influencing machining quality and efficiency. Finite element models of tool and part are set up using finite element software Deform-3D. Variety laws of cutting force and temperature under different process parameters are simulated. The results are analyzed. Cutting force grows obviously with the growth of cutting speed (vc). However, cutting force fluctuates and decreases with the growth of cutting depth (ap) indicating the phenomenon of work hardening. Cutting force fluctuates and grows with the growth of feed rate ( f ). But the influence of feed rate ( f ) to cutting force is smaller than that of cutting speed (vc). The growths of the above mentioned three process parameters all cause the rise of temperature. Machining simulation research provides the optimum process parameters for CNC programming.

2014 ◽  
Vol 800-801 ◽  
pp. 269-274
Author(s):  
Shu Tao Huang ◽  
Wan Yong Chen ◽  
Li Zhou

In this paper, based on finite element software DEFORM, the model of a large cutting depth and quasi-high speeds milling of titanium alloys is built to study the cutting temperature and cutting force variation along with the change of cutting parameters. The simulation results show that: the location of the maximum cutting temperature appears in the cutting edges of the tool nose circular profile. Meanwhile, due to workpiece material rebound in the cutting process, the interface between workpiece and tool flank face occurs serious extrusion, which results in relatively high cutting temperature on the workpiece machined surface. In addition, cutting speed and feed rate per tooth play a key role in influencing the cutting temperature. However, the influence of cutting depth on the cutting temperature is less clear. With the increase in the feed rate and depth of cut, cutting force increased significantly. In particular, within the scope of the cutting speeds under the given conditions, the cutting force has a tendency to decrease with the cutting speed increasing over 120m/min.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 289 ◽  
Author(s):  
Antonio Rubio-Mateos ◽  
Asuncion Rivero ◽  
Eneko Ukar ◽  
Aitzol Lamikiz

In finishing processes, the quality of aluminum parts is mostly influenced by static and dynamic phenomena. Different solutions have been studied toward a stable milling process attainment. However, the improvements obtained with the tuning of process parameters are limited by the system stiffness and external dampers devices interfere with the machining process. To deal with this challenge, this work analyzes the suitability of elastomer layers as passive damping elements directly located under the part to be machined. Thus, exploiting the sealing properties of nitrile butadiene rubber (NBR), a suitable flexible vacuum fixture is developed, enabling a proper implementation in the manufacturing process. Two different compounds are characterized under axial compression and under finishing operations. The compression tests present the effect of the feed rate and the strain accumulative effect in the fixture compressive behavior. Despite the higher strain variability of the softer rubber, different milling process parameters, such as the tool feed rate, can lead to a similar compressive behavior of the fixture regardless the elastomer hardness. On the other hand, the characterization of these flexible fixtures is completed over AA2024 floor milling of rigid parts and compared with the use of a rigid part clamping. These results show that, as the cutting speed and the feed rate increases, due to the strain evolution of the rubber, the part quality obtained tend to equalize between the flexible and the rigid clamping of the workpiece. Due to the versatility of the NBR for clamping different part geometries without new fixture redesigns, this leads to a competitive advantage of these flexible solutions against the classic rigid vacuum fixtures. Finally, a model to predict the grooving forces with a bull-nose end mill regardless of the stiffness of the part support is proposed and validated for the working range.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 840 ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li ◽  
Mozammel Mia

Cutting force in the machining process of SiCp/Al particle reinforced metal matrix composite is affected by several factors. Obtaining an effective mathematical model for the cutting force is challenging. In that respect, the second-order model of cutting force has been established by response surface methodology (RSM) in this study, with different cutting parameters, such as cutting speed, feed rate, and depth of cut. The optimized mathematical model has been developed to analyze the effect of actual processing conditions on the generation of cutting force for the turning process of SiCp/Al composite. The results show that the predicted parameters by the RSM are in close agreement with experimental results with minimal error percentage. Quantitative evaluation by using analysis of variance (ANOVA), main effects plot, interactive effect, residual analysis, and optimization of cutting forces using the desirability function was performed. It has been found that the higher depth of cut, followed by feed rate, increases the cutting force. Higher cutting speed shows a positive response by reducing the cutting force. The predicted and experimental results for the model of SiCp/Al components have been compared to the cutting force of SiCp/Al 45 wt%—the error has been found low showing a good agreement.


2011 ◽  
Vol 411 ◽  
pp. 398-402 ◽  
Author(s):  
Xiao Bing Gao ◽  
Yan Xue ◽  
Fu Jia Wu

CNC milling process parameters is the key issue to improve quality and productivity of product and save cost. Especially, in the end milling of the pockets, the radial depth and real feed vary as the end mill moves along the corner. This will result in the unstable of the cutting force and the bad accuracy of the milled pockets. In this paper, according to analysis of CNC machining process, the model of dynamic cutting force based on knowledge in the end milling of the pockets is established, which is predicted by the model of cutting force coefficient. The optimization milling parameters can be calculated in terms of the model of dynamic cutting force in the pockets, work piece material properties. In the end, the experiment proves the process of optimization.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 760
Author(s):  
Ramakant Rana ◽  
R. S. Walia ◽  
Qasim Murtaza

In this work, we have deposited the diamond-like carbon (DLC) coating on the tungsten carbide (WC) tool insert using the thermal chemical vapor deposition (CVD) method. For the growth of DLC coating, sugarcane bagasse was used as a carbon precursor. Raman spectroscopy, a field emission scanning electron microscope (FESEM), and X-ray diffraction (XRD) were used to confirm the presence of DLC coating on the tungsten carbide tool inserts. The hardness tests were also performed for inspecting the microhardness induced by the self-developed DLC coating on the tungsten carbide (WC) tool insert. To determine the optimum process parameters for the turning operation on an aluminum (6061) workpiece using a self-developed DLC-coated tungsten carbide (WC) tool insert, we have applied the technique for order preference by similarity to ideal solution (TOPSIS) methods. The process parameters considered for the optimization were feed rate, cutting speed, and depth of cut. Whereas chosen response variables were flank wear, temperature in the cutting zone, and surface roughness. TOPSIS is utilized to analyze the effects of selected input parameters on the selected output parameters. This study in this paper revealed that it was advantageous to develop the DLC coating on the tungsten carbide tool inserts for the machining applications. The results also revealed that a 0.635 mm depth of cut, feed rate of 0.2 mm/rev, and cutting speed of 480 m/min were the optimum combination of process parameters.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Rashid Ali Laghari ◽  
Jianguang Li

Abstract In this study, the proposed experimental and second-order model for the cutting forces were developed through several parameters, including cutting speed, feed rate, depth of cut, and two varying content of SiCp. Cutting force model was developed and optimized through RSM and compared for two different percentages of components SiCp/Al 45% and SiCp/Al 50%. ANOVA is used for Quantitative evaluation, the main effects plot along with the evaluation using different graphs and plots including residual analysis, contour plots, and desirability functions for cutting forces optimization. It provides the finding for choosing proper parameters for the machining process. The plots show that during increment with depth of cut in proportion with feed rate are able to cause increments in cutting forces. Higher cutting speed shows a positive response in both the weight percentage of SiCp by reducing the cutting force because of higher cutting speed increases. A very fractional increasing trend of cutting force was observed with increasing SiCp weight percentages. Both of the methods such as experiment and model-predicted results of SiCp/Al MMC materials were thoroughly evaluated for analyzing cutting forces of SiCp/Al 45%, and SiCp/Al 50%, as well as calculated the error percentages also found in an acceptable range with minimal error percentages. Article Highlights This study focuses on the effect of cutting parameters as well as different percentage of SiC particles on the cutting forces, while comparing the results of both SiC particles such as SiCp/Al 45%, and SiCp/Al 50% the result shows that there isn’t fractional amount of impact on the cutting force with nominal increasing percentages of SiC particles. Cutting speed in machining process of SiCp/Al shows positive response in reducing the cutting forces, however, increasing amount of depth of cut followed by increasing feed rate creates fluctuations in cutting force and thus increases the cutting force in the cutting process. The developed RSM mathematical model which is based on the box Behnken design show excellent competence for predicting and suggesting the machining parameters for both SiCp/Al 45%, and SiCp/Al 50% and the RSM mathematical model is feasible for optimization of the machining process with good agreement to experimental values.


This project was done to learn the effects of cutting parameters on cutting force and roughness (surface roughnes) of AZ31 magnesium (Mg) alloy. Machining parameters involved in this project are cutting speed, feed rate, and lubrication methods. Deckel Maho DMU 50 eVolution high speed milling machine was using and uncoated carbide button insert was used as the cutting tool. Cutting force was measured during the milling process and roughness was measured after that and cleaning process to ensure no interference that would conflicted the results. The best machining parameters identified when feed rate at 0.05 mm per tooth, cutting speed are at 600 m per min, and minimum quantity lubrication was applied during the machining process. From analysis of variance (ANOVA) table generated by Minitab software, this project can conclude that feed rate, cutting speed, and lubrication methods are significant to cutting force and roughness when machining AZ31 Mg Alloy Therefore, the relationship of surface roughness and cutting force should be taken as a major key point in machining processes. In the automotive field, magnesium was used to fabricate an engine that place at front body due to reduce the weight of vehicle. This design can increase performance and balancing of weight [1].


2010 ◽  
Vol 150-151 ◽  
pp. 1667-1672 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
Mohd Shahir Kasim ◽  
T.K. Soon ◽  
Gusri Akhyar Ibrahim ◽  
...  

The purpose of this study is to investigate the effect of turning parameters on the surface integrity of Inconel 718. The turning parameters studied were cutting speed of 90, 120, 150 m/min, feed rate of 0.15, 0.25, 0.25mm/rev and depth of cut of 0.3, 0.4, 0.5 mm under minimum quantity lubricant (MQL) using coated carbide tool. surface response methodology (RSM) design of experiment using Box-Behnken approach has been employed consisting of various combination of turning parameters Surface roughness, surface topography, microstructure and the micro hardness of the machined surface were studied after the machining process. Feed rate was found to be the most significant parameter affecting the surface roughness. The optimum parameter was obtained with Ra equal to 0.243 µm at cutting speed of 150 m/min, feed rate of 0.25 mm/rev and depth of cut of 0.3mm. A mathematical model for surface roughness was developed using Response Surface Methodology. The effect of turning parameters and factor interactions on surface roughness is presented in 3D graphical form, which helps in selecting the optimum process parameters to achieve the desired surface quality.


2018 ◽  
Vol 5 ◽  
pp. 5 ◽  
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni

This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.


Sign in / Sign up

Export Citation Format

Share Document