Morphology Controlled Ionothermal Synthesis and Characterization of Ceria Nanomaterials

2014 ◽  
Vol 1024 ◽  
pp. 112-115
Author(s):  
Yi Tong Lee ◽  
Sujan Chowdhury ◽  
Mohamad Azmi Bustam ◽  
Mohammed Ibrahim Abdul Mutalib ◽  
Muti Mohamed Norani

Crystalline ceria nanomaterials have been successfully synthesized through ionothermal treatment method. Morphology of the ceria nanoparticles are confirmed with scanning electron microscopy (SEM), transmission electron microscopy (TEM) with an average size of 6-30 nm and with the N2adsoprtion-desorption technique in the range of 46-62 m2g-1in the presence of ionic liquid as base on acetate anion, trifluoroacetate anion, dicyanamide anion as organic linker, cerium nitrate hexahydrate as precursor and ammonia. It was found that the cerium oxide synthesized by acetate anion based ionic liquid has cube shape morphology and gradually form belt shape as elevated the hydrothermal treatment temperature. Cerium oxide synthesized by trifluoroacetate anion based ionic liquid remains its cubic morphology even at elevated temperature. Whereas, cerium oxide synthesized by dicyanamide anion based ionic liquid, ceria particles agglomerate and form irregular structures. The synthesized ceria nanocrystals show better performance for the degradation of methylene blue.

2014 ◽  
Vol 625 ◽  
pp. 164-167
Author(s):  
Mohd Aliff Irham Md. Azhar ◽  
Sujan Chowdhury ◽  
Pradip Chandra Mandal ◽  
Muhd Fahmi Daman ◽  
Sekhar Bhattacharjee ◽  
...  

Cerium Oxide (CeO2) nanocubes are synthesized by using hydrothermal treatment method in the presence of four different types of ionic liquid such as acetate anion, phosphate anion, and dicyanamide anion. Ceria nanocubes has been consisted with average size of 16 to 31 nm in diameter and characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), and surface analyzer and porosimetry analysis (ASAP). Ceria nanocubes have higher photocatalytical ability in the degradation of methylene blue as compared to commercial ceria nanoparticles which are confirmed through ultraviolet-visible spectroscopy (UV/Vis).


Author(s):  
Yujie Meng ◽  
Cristian I. Contescu ◽  
Peizhi Liu ◽  
Siqun Wang ◽  
Seung-Hwan Lee ◽  
...  

AbstractAn electron microscopy investigation was performed to understand the relationship between the microstructure and properties of carbonized cellulose and lignin (softwood kraft lignin) relative to the structure of the original biomass components. Structure details at micro- and molecular levels were investigated by scanning transmission electron microscopy. Atomic-resolution images revealed the presence of random disordered carbon in carbonized cellulose (C-CNC) and of large domains of well-ordered carbon with graphite sheet structure in carbonized lignin (C-Lignin). These structural differences explain why C-CNC exhibits higher surface area and porosity than C-Lignin. The presence of certain well-ordered carbon in carbonized lignin indicates some of the carbon in lignin are graphitized with heat treatment temperature up to 950 °C. This result is encouraging for future endeavors of attaining acceptable modulus of carbon fiber from lignin given suitable modifications to the chemistry and structure of lignin. The results of this research contribute to an improved understanding of the carbonization mechanism of the key cellulose and lignin components of biomass materials.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
D. A. R. Souza ◽  
M. Gusatti ◽  
R. Z. Ternus ◽  
M. A. Fiori ◽  
H. G. Riella

A practical and economical method was developed for the production of an antibacterial cotton fabric using zinc oxide nanostructures without the use of surface modifying agents. In this process, zinc nitrate hexahydrate and potassium hydroxide were used as starting materials and the reaction was performed at 50°C. The in situ growth of ZnO nanostructures on cotton fabric occurred in a single-stage process, and it started when the fabric samples were dipped for 1 min in the solution containing all the starting materials. The treated and untreated fabric samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and EDS. The cotton fabrics coated with ZnO nanostructures presented an antibacterial efficiency towards Pseudomonas aeruginosa, a gram-negative bacteria, and Staphylococcus aureus (S. aureus), a gram-positive bacteria.


2011 ◽  
Vol 236-238 ◽  
pp. 2110-2113
Author(s):  
Hong Liu ◽  
Meng Yang Wang ◽  
Wei Ran Cao

The hexagonal mesoporous silica (HMS) nano-particles were prepared in mixture of 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIM+BF4-) ionic liquid and water by a sol-gel method. The structure and morphology of obtained materials were characterized by X-ray powder diffraction (XRD), N2adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The influence of the amount of BMIM+BF4-was investigated. It was shown that the synthesized materials have discrete and uniform spherical morphology with the size in the range of 68-177 nm (obtained from DLS measurements), and the particle size of HMS can be controlled by varying the amount of BMIM+BF4-.


2018 ◽  
Vol 83 (6) ◽  
pp. 745-757 ◽  
Author(s):  
Ivana Milenkovic ◽  
Ksenija Radotic ◽  
Branko Matovic ◽  
Marija Prekajski ◽  
Ljiljana Zivkovic ◽  
...  

Cerium oxide (CeO2) nanoparticles (CONPs) are interesting biomaterials with various applications in biomedicine, cosmetics and the pharmaceutical industry, but with limited practical application because of their low stability in aqueous media. The aim of this study was to obtain CONPs with increased stability by coating the particles. Microbial exopolysaccharides (levan, pullulan) and glucose were used to prepare CONPs under different synthesis conditions. Coating was attempted by adding the carbohydrates during (direct coating) or after (subsequent coating) the synthesis of CONPs. The obtained nanoparticles were characterized by X-Ray diffraction analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The suspension stability of the uncoated and coated CONPs in aqueous media was evaluated by measuring the hydrodynamic size, zeta potential and turbidity. The FT-IR spectra revealed the differences between coated CONPs and showed the success of subsequent coating with carbohydrates. Coating with carbohydrates improved the stability the CONP suspension by decreasing the size of aggregated particles. The suspensions of levan- and glucose-coated CONPs had the best stability. In this study, CONPs were prepared using non-toxic materials, which were completely environmentally friendly. The obtained results open new horizons for CONP synthesis, improving their biological applications.


2013 ◽  
Vol 704 ◽  
pp. 270-274 ◽  
Author(s):  
Jian Ye ◽  
Lan Ping Sun ◽  
Sheng Ping Gao

We have demonstrated the fabrication of novel poly(vinylbenzyl chloride)@lead sulfide (PVBC@PbS) core-shell nanospheres via the atom transfer reversible polymerization (ATRP) of lead dimethacrylate (Pb(MA)2) initiated from methyl chloride groups on surfaces of PVBC nanoparticles and subsequent reaction with ethanethioamide. The chemical structure of the PVBC@PbS nanospheres was confirmed by the fourier transform infrared (FTIR) spectroscopy, and the morphology of the nanospheres were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average size of the nanospheres was determined to be about 100 nm. The PVBC@PbS nanospheres were able to absorb phenol in the solution, and the balanced adsorption capability of phenol to nanospheres could reach to 7.2 μg/mg.


2020 ◽  
pp. 095400832094538
Author(s):  
Sagar Kumar Nayak ◽  
Arjyama Mishra ◽  
Subhransu S Pradhan ◽  
Jyoti Agarwal

The current study reports the synthesis of expanded graphite (EG) in two different ways and its fabrication with epoxy matrix to form composite at various filler fractions (5, 10, 12.5). One type EG (EG-C) is prepared by the electrochemical process using natural graphite flake (NGF), concentrated sulfuric acid, and ammonium persulfate, while the other (EG-P) is just mixing and heating of NGF with zinc nitrate hexahydrate. The functional groups of synthesized EG were confirmed by Fourier transform infrared spectroscopy. The surface morphology and microstructure of synthesized filler (EG-C, EG-P) were studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. An optimum through-plane thermal conductivity (TC) of 2.04 and 2.22 W/mK was observed in the case of the composites containing 12.5 wt% of EG-C and EG-P, respectively. The obtained experimental TC was compared with three numerical thermal models, that is, inverse rule of mixture, Maxwell–Eucken model, and Agari model. Furthermore, the thermal stability of both composites was compared by using a thermogravimetric analyzer. The electrical resistivity of EG-P/epoxy composite at different formulations was higher than the EG-C-filled epoxy composites.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


Sign in / Sign up

Export Citation Format

Share Document