Discussion for the Calculation of Carbon Content and Heating Temperature in Austenitizing of Cast Iron

2014 ◽  
Vol 1028 ◽  
pp. 62-67 ◽  
Author(s):  
Wen Bang Gong ◽  
Yun Zhang ◽  
Huan Liu ◽  
Hua Fang Wang ◽  
Yu Qin Wu ◽  
...  

In this paper, a formula for calculation of carbon content during austenitizing of cast iron was developed with consideration of the effect of silicon content. According to this formula, carbon content of austenite at a certain austenization temperature for a cast iron with given composition can be easily calculated, and the austenization temperature for getting the expected carbon content in the austenite can also be determined. Besides, according to the relationship between austenization temperature Tx and the according carbon content Cax, and considering the effect of silicon content, the diagram of Cax, Tx and silicon content during the austenitizing process of cast iron was made.

2009 ◽  
Vol 294 ◽  
pp. 105-111
Author(s):  
Wen Bang Gong ◽  
Gang Yu Xiang

In this paper, a formula for the calculation of the carbon content during the austenitizing of cast iron was deduced, considering the effect of silicon content upon the heat-treatment parameter. According to this formula, the carbon content of the austenite at a certain austenization temperature for a cast iron with given components can be easily calculated, and the austenization temperature required to give the expected carbon content in the austenite can also be determined. Moreover, according to the relationship between the austenization temperature Tx and the associated carbon content Cax,, and considering the effect of the silicon content, a diagram showing Cax, Tx and the silicon content during the austenitizing of cast iron was prepared.


2011 ◽  
Vol 704-705 ◽  
pp. 11-15 ◽  
Author(s):  
Wen Bang Gong ◽  
Li Luo ◽  
Guo Dong Chen ◽  
Gang Yu Xiang

In this paper, a formula for the calculation of carbon content during austenitizing of cast iron was deduced, considering the effect of silicon content. According to this formula, carbon content of austenite at a certain austenization temperature for a cast iron with given composition can be easily calculated, and the austenization temperature for getting the expected carbon content in the austenite can also be determined. Besides, according to the relationship between austenization temperature Tx and the according carbon content Cax, and considering the effect of silicon content, the carbon content of the austenite in the commonly used cast iron during heat treatment was calculated. The formula can be as a theoretical basis for determined austenization temperature and carbon content in austenite during heat treatment of cast iron, in particular, can play an important role in heat treatment of austempered ductile iron. Keywords: cast iron heat treatment; diffusion of carbon; carbon content in austenite


2013 ◽  
Vol 772 ◽  
pp. 52-56 ◽  
Author(s):  
Wen Bang Gong ◽  
Yun Zhang ◽  
Gang Yu Xiang

In this paper, a formula for the calculation of carbon content during austenitizing of cast iron was deduced, considering the effect of silicon content on the heat treatment parameter. According to this formula, the carbon content of the austenite in a certain austenization temperature for a cast iron with given components can be easily calculated, and the austenization temperature for getting the expected carbon content in the austenite can also be determined. Besides, according to the relationship between austenization temperature Tx and the according carbon content Cax, and considering the effect of silicon content, the diagram of Cax, Tx and silicon content during the austenitizing process of cast iron was made.


2022 ◽  
Author(s):  
D. Boldyrev

Abstract. Wear and crack resistance are important operational characteristics of brake discs. The paper presents the most optimal concentration of sulfur in cast iron, which ensures its least wear, and discusses the implementation of the front brake discs manufacture from Gh190 cast iron having 0.11 ... 0.13% sulfur content at contrast to the 0.01 ... 0.03% sulfur content, and proves the change leads to a significant increase in wear and frictional properties of the discs. In the course of research, it is found that the increase in the crack resistance of brake discs is possible due to the improvement of the thermophysical properties of cast iron with the increase in the carbon content (up to 3.55 ... 3.60%) and the decrease in the silicon content (up to 1.45 ... 1.50%), while the carbon equivalent is constant.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


2015 ◽  
Vol 15 (1) ◽  
pp. 93-98 ◽  
Author(s):  
M. S. Soiński ◽  
A. Jakubus ◽  
K. Skurka

Abstract The work determined the influence of aluminium in the amount from about 1% to about 7% on the graphite precipitates in cast iron with relatively high silicon content (3.4% to 3.90%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture and graphitized with ferrosilicon. The performed treatment resulted in occurring of compact graphite precipitates, mainly nodular and vermicular, of various size. The following parameters were determined: the area percentage occupied by graphite, perimeters of graphite precipitates per unit area, and the number of graphite precipitates per unit area. The examinations were performed by means of computer image analyser, taking into account four classes of shape factor. It was found that as the aluminium content in cast iron increases from about 1.1% to about 3.4%, the number of graphite precipitates rises from about 700 to about 1000 per square mm. For higher Al content (4.2% to 6.8%) this number falls within the range of 1300 - 1500 precipitates/mm2. The degree of cast iron spheroidization increases with an increase in aluminium content within the examined range, though when Al content exceeds about 2.8%, the area occupied by graphite decreases. The average size of graphite precipitates is equal to 11-15 μm in cast iron containing aluminium in the quantity from about 1.1% to about 3.4%, and for higher Al content it decreases to about 6 μm.


2021 ◽  
pp. 23-28
Author(s):  
V. A. Gulevskiy ◽  
◽  
S. N. Tsurikhin ◽  
V. V. Gulevskiy ◽  
N. Yu. Miroshkin ◽  
...  

Research is devoted to the influence of the technological method of modifying gray cast iron for the manufacture of steel casting molds. Heavy operation imposes stringent requirements both on the design of molds and on the materials from which they are made. They reliably withstand the effects of steel poured into them, having a temperature of 1600–1700 °C, thermal shock, which is directly proportional to this temperature, as well as significant effects of cyclic thermal stress and deformation. Specific operating conditions of molds (high heating temperature, their installation on movable and stationary ditches, intensive traffic flows, etc.) complicate the necessary processes directly during their operation. Modeling geometric shapes on a scale of geometric similarity 1:10. Tests were carried out on molds cast from cast iron for consumable electrodes, modified with ferrosilicon (FS65 GOST 1415-93), primary aluminum A99 (GOST 11069-2001), vanadium slag (SHVD-1 TU14-11-178-86), FSB-30) and silicomishmetal (SIMISH-1). These modifiers were chosen for modification, as they are widely used in production. Thus, the conducted studies of the nature of the deformation of the walls of the molds and the stress-strain state on models made of gray and modified cast iron make it possible to assess the advantages and disadvantages of the resulting structure and shape of graphite. Further, the methods of the rational formula of the outer surface of profiled and sheet molds are used, having predetermined the nature of destruction in advance. The use of thin-walled used rational forms can significantly reduce their specific consumption. The study of the quality of the metal cast into the experimental curved outer surface showed that the macrostructure of the metal of the experimental and ordinary ingots is the same. The work was attended by N.V Markina, senior lecturer at the Dept. of Machines and Foundry Technology, Volgograd State Technical University.


2014 ◽  
Vol 789 ◽  
pp. 593-598
Author(s):  
Hong Liang Zheng ◽  
Lin Li ◽  
Xin Xin Yuan ◽  
Xue Lei Tian

This paper presents the relationship between the carbon atom diffusion coefficient in the austenite and the temperature during the nodular cast iron solidification under different cooling rates or with different carbon contents. Pouring the wedge-shaped casting explores the influence of cooling rate on the diffusion coefficient. The other part explores the change of the diffusion coefficient with different carbon contents by water quenching to save the organization in the solidification. Results show that both the cooling rate and the carbon content can affect the diffusion coefficient, and it decreases as the cooling rate increases. More attempts were also done to correlate the diffusion coefficient with the temperature in different carbon content. It has been found that the diffusion coefficient decreases as the temperature increase.


2014 ◽  
Vol 12 ◽  
pp. 04006 ◽  
Author(s):  
Akram Alhussein ◽  
Marion Risbet ◽  
Jerome Favergeon

Sign in / Sign up

Export Citation Format

Share Document