Alternate Design Solutions for Reduced Stress Concentration Factor (SCF) T Joints of Circular Hollow Structures

2014 ◽  
Vol 1029 ◽  
pp. 44-49
Author(s):  
Gabriel Dima ◽  
Teodor Machedon-Pisu ◽  
Ion Balcu

Design for fatigue of lightweight welded tubular structures is a significant concern of development teams. Based on practical design experience, alternate T joint design to usual Circular Hollow Structures (CHS) T joins are proposed. Proposed designs employ formed members within relevant dimensions range. A method based on finite element analysis including weld modelling was used, with analytical calculation of weld toe stress. Stress concentration factors (SCF) are calculated for all proposed designs for all typical load cases. Best placement and dimensions of formed members is given, together with design recommendations.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 546
Author(s):  
Krzysztof L. Molski ◽  
Piotr Tarasiuk

The paper deals with the problem of stress concentration at the weld toe of a plate T-joint subjected to axial, bending, and shearing loading modes. Theoretical stress concentration factors were obtained from numerical simulations using the finite element method for several thousand geometrical cases, where five of the most important geometrical parameters of the joint were considered to be independent variables. For each loading mode—axial, bending, and shearing—highly accurate closed form parametric expression has been derived with a maximum percentage error lower than 2% with respect to the numerical values. Validity of each approximating formula covers the range of dimensional proportions of welded plate T-joints used in engineering applications. Two limiting cases are also included in the solutions—when the weld toe radius tends to zero and the main plate thickness becomes infinite.


2007 ◽  
Vol 353-358 ◽  
pp. 1995-1998
Author(s):  
Byeong Choon Goo

The purpose of this paper is to develop an estimation formula of stress concentration factors of butt-welded components under tensile loading. To investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints, butt-welded specimens were made by CO2 gas metal arc welding. And the three main parameters, the toe radius, flank angle and bead height were measured by a profile measuring equipment. By using the measured data, the influence of three parameters on the stress concentration factors was investigated by a finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. According to the simulation results, a formula to estimate the stress concentration factors of butt-weld welded structures was proposed and the estimated concentration factors from the formula were compared with the results obtained by the finite element analysis. The two results are in a good agreement.


2021 ◽  
pp. 136943322110499
Author(s):  
Feleb Matti ◽  
Fidelis Mashiri

This paper investigates the behaviour of square hollow section (SHS) T-joints under static axial tension for the determination of stress concentration factors (SCFs) at the hot spot locations. Five empty and corresponding concrete-filled SHS-SHS T-joint connections were tested experimentally and numerically. The experimental investigation was carried out by attaching strain gauges onto the SHS-SHS T-joint specimens. The numerical study was then conducted by developing three-dimensional finite element (FE) T-joint models using ABAQUS finite element analysis software for capturing the distribution of the SCFs at the hot spot locations. The results showed that there is a good agreement between the experimental and numerical SCFs. A series of formulae for the prediction of SCF in concrete-filled SHS T-joints under tension were proposed, and good agreement was achieved between the maximum SCFs in SHS T-joints calculated from FE T-joint models and those from the predicted formulae.


Author(s):  
Carlos A. Pereira ◽  
Paulo P. Silva ◽  
Anto´nio F. Mateus ◽  
Joel A. Witz

This paper presents the results of investigations into the mechanics and failure modes of structural details usually encountered in lightweight marine structures. The structural analyses are performed using non-linear finite element analysis. The stress concentration factors and expected fatigue lives of the as designed and the as built structural details are evaluated and alternative configurations are discussed with the aim of improving the designs for production.


1970 ◽  
Vol 40 (2) ◽  
pp. 137-141
Author(s):  
R. Nagendra Babu ◽  
K. V. Ramana ◽  
K. Mallikarjuna Rao

Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors.Keywords: Stress Concentration Factors; FiniteElement Analysis; ANSYS.DOI: 10.3329/jme.v40i2.5355Journal of Mechanical Engineering, Vol. ME 40, No. 2, December 2009 137-141


1988 ◽  
Vol 110 (2) ◽  
pp. 85-92 ◽  
Author(s):  
T. Sato ◽  
S. Sano ◽  
K. Ishikawa ◽  
T. Nakano

Finite element analyses were conducted of the threaded marine riser connector which has the main, internal, and external shoulder seals. The objectives of the analyses are to evaluate the fatigue resistance, strength, and seal capability of the connector under the bending, tensile, internal and external pressure loads. An element which models the bending effect in an axisymmetric body is developed and implemented into the computer program ADINA. Using the program, stress concentration factors at the corner and threaded parts of the connector under these loads are obtained. The large contribution of both shoulders to the reduction of the stress concentration factors is found to be quite clear. The seal mechanism and the stress response of the connectors are also clarified. The fatigue evaluation based on ASME Boiler and Pressure Vessel Code, Sec. III, Rules for Construction of Nuclear Power Plant Components, Division 1, Subsection NB are compared with the experimental results.


Author(s):  
Mira K. Sahney

The fundamental design of high pressure joints such as crosses and tees has remained the same for many years. However, the introduction of commercially available high pressure equipment operating at 600 MPa and higher has demanded improved designs for these classic connections. This study presents a new design concept for reducing the stress concentration at intersecting crossbores. Both the finite element analysis and the fatigue test results from the standard high pressure design and the new design are compared. The new approach realizes a 17–25% reduction in the stress concentration factors and a 40% improvement in fatigue life test results when compared to the standard design.


Sign in / Sign up

Export Citation Format

Share Document