Study of Dynamic Mechanical Properties on Cement Asphalt Mortar of High Elastic Type

2014 ◽  
Vol 1049-1050 ◽  
pp. 346-353
Author(s):  
Lei Fang ◽  
De Hua Deng ◽  
Jian Wei Peng ◽  
Yong Wang ◽  
Qing Tian

Dynamic mechanical properties of high elastic type cement and asphalt mortar (CA mortar) for high-speed railway was studied by split Hopkinson pressure bar (SHPB) in this paper. The experimental result show that the compressive strength of CA mortar increases gradually with the increasing of strain-rate. However, the increasing rate of compressive of CA mortar decreases with the further increasing strain-rate. The increasing rate of compressive strength is 57.65% for the strain-rate ranging from 25.16 s-1to 35.79 s-1 and 20.39% for the strain-rate from 94.64 up to 111.15 s-1, respectively. The larger the strain-rate is, the more serious the cracking is when CA mortar specimen damaged. The specific energy adsorption of CA mortar increases with the increasing strain-rate.


2016 ◽  
Vol 1136 ◽  
pp. 543-548 ◽  
Author(s):  
Qing Feng Liu ◽  
Ning Chang Wang ◽  
Lan Yan ◽  
Feng Jiang ◽  
Hui Huang

The dynamic mechanical properties of oxygen free copper has been tested under the different strain rate (4700s-1~21000s-1) at the room temperature by split Hopkinson pressure bar (SHPB), the true stress-true strain curves has been obtained. Power-Law constitutive model and Johnson-Cook constitutive model have been built to fit the experimental result from SHPB test of oxygen free copper, meanwhile, the constitutive model can be applied to the simulation analysis of cutting process. The results show that the oxygen free copper is sensitive to the strain rate. In addition, the Johnson-Cook constitutive model predicts the plastic flow stress of the oxygen free copper more accurately than the Power-Law constitutive model at the high strain rate.



2014 ◽  
Vol 44 (7) ◽  
pp. 672-680 ◽  
Author(s):  
YouJun XIE ◽  
Hao SONG ◽  
GuangCheng LONG ◽  
Qiang FU


2010 ◽  
Vol 452-453 ◽  
pp. 281-284
Author(s):  
Zhong Liang Chang ◽  
Guang Ping Zou ◽  
Wei Ling Zhao ◽  
Yang Cao ◽  
Rui Rui Wang

The continuous basalt fiber (CBF) as inorganic fiber obtained from the basalt melt. It has high elastic modulus, low bulk density, low thermal conductivity, low moisture absorption rate and excellent alkali resistance, etc. In this paper, the split Hopkinson pressure bar (SHPB) technique is used for testing the CBF composite plate and its sandwich structure with aluminum foam core dynamic mechanical properties, and then to study the dynamic properties of CBF composite plate and its aluminum foam sandwich structure under different high strain rate. From the test results we can see that the CBF-foam aluminum sandwich structure has superior energy absorption properties, and also from the experiment results we can obtain that the sandwich structure dynamic stress-strain curves has a typically "three-phase" characteristics and strain rate effect.



Author(s):  
Jun-Zhong Liu ◽  
Jin-Yu Xu ◽  
Xiao-Cong Lv ◽  
De-Hui Zhao ◽  
Bing-Lin Leng

Abstract In order to investigate rock dynamic mechanical properties of amphibolites, sericite-quartz schist and sandstone under the different strain rates varying from 30 s -1 to 150 s -1 , the specimens were subjected to axial impact at different projectile speeds by using the split Hopkinson pressure bar (SHPB) of 100 mm in diameter. The optimal experimental size of rock samples is verified by analyzing the stress equilibrium of cylindrical rock samples in different thicknesses. It has studied the mechanic properties of these three rocks which under impact loadings; and analysed the dynamic compressive strength, failure modes, energy dissipation variation with the strain-rate and the strain-rate hardening effect from the perspective of material microstructure. Experimental results show that the dynamic Young's modulus of rock samples increase with strain-rate slightly. The dynamic failure modes of different rock samples are always different. When at a lower strain-rate, the damage of sandstone takes a peeling off the external radial tensile failure mode, but that of amphibolites takes axial splitting mode; when at a higher strain-rate, sandstone takes granular crushing failure mode, and that of amphibolites and of sericite-quartz schist take massive crushing mode. Significant strain-rate effect can be represented by a linear relation between the specific energy absorption and the strain-rate , or between the dynamic strength increase factor η and .



2011 ◽  
Vol 471-472 ◽  
pp. 385-390 ◽  
Author(s):  
Mohd Firdaus Omar ◽  
Md Akil Hazizan ◽  
Zainal Arifin Ahmad

Strain rate sensitivity and dynamic mechanical properties of polymeric materials are affected to a certain extent especially by the rate of loading. However, there is limited number of works reported on that particular issue. Therefore, the paper presents on static and dynamic mechanical properties of various polymeric materials across strain rate from 10-2 to 10-3 s-1. The specimen were tested using universal testing machine (UTM) for static loading and a conventional split Hopkinson pressure bar (SHPB) apparatus for dynamic loading. From the results, the compression modulus and compressive strength of all tested specimen increased significantly with increasing strain rates. In addition, positive increment in terms of strain rate sensitivity was recorded for all tested polymers over a wide range of strain rate investigated. Meanwhile, the thermal activation volume has decreased as increasing strain rate. Of the three polymers, polypropylene shows the highest strain rate sensitivity at static region. On the other hand, at dynamic region, polycarbonate shows the highest strain rate sensitivity than that of polypropylene and polyethylene.



2013 ◽  
Vol 631-632 ◽  
pp. 771-775 ◽  
Author(s):  
Rong Jun Chen ◽  
Hong Wei Liu ◽  
Rui Zeng

Dynamic mechanical properties of silica fume concrete in a number of strain rate under the conditions of dynamic compression mechanical properties subjected to various strain rates were studied, and gained the stress versus strain curves, details of an experimental investigation using 74 mm-diameter split Hopkinson pressure bar(SHPB) apparatus were presented. The results showed that: The admixture of silica fume concrete impact resistance, especially under the impact of the performance of high-speed has a very important influence, with the impact velocity increased, the strain rate increase, and its impact more obvious.



2014 ◽  
Vol 692 ◽  
pp. 179-186
Author(s):  
Wei Ping Bao ◽  
Zhi Ping Xiong ◽  
Fu Ming Wang ◽  
Jian Shu ◽  
Xue Ping Ren

Dynamic mechanical properties and microstructures of pure iron and Fe-30Mn-3Si-4Al TWIP (TWinning Induced Plasticity) steel were conducted by SHPB (Split-Hopkinson Pressure Bar), OM (Optical Microscopy) and TEM (Transmission Electron Microscope), at the strain rate ranging from 102 to 105 s-1 and at room temperature. The effect of high strain rate on the mechanical responses of pure iron and Fe-30Mn-3Si-4Al TWIP steel belonging to BCC (Body Centered Cubic) and FCC (Face Centered Cubic) structures respectively was evaluated. The comparison of deformation mechanism was analyzed between them and it concluded that dislocation gliding is a major deformation mechanism in pure iron with BCC structure and deformation twinning plays a significant role in Fe-30Mn-3Si-4Al TWIP steel with FCC structure.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
JiaZhi Zhang ◽  
Ming Li ◽  
Gang Lin ◽  
Lianying Zhang ◽  
Hao Yu ◽  
...  

The research on dynamic mechanical properties of rocks under high temperature is the basis for safe and efficient implementation of deep coal mining and underground coal gasification engineering. In this paper, the split Hopkinson bar (SHPB) with real-time high-temperature function was adopted to systematically study dynamic mechanical properties of sandstones. The research showed that under the condition of a fixed temperature, with the increase of strain rate, the dynamic compressive strength and dynamic peak strain of sandstone increased gradually, and the variation of dynamic elastic modulus with strain rate was not obvious. With the increase of temperature, the dynamic compressive strength of sandstone increased first and then decreased, the dynamic peak strain increased gradually, and the dynamic elastic modulus decreased overall. The variation law of macroscopic failure mode and energy dissipation density with temperature was revealed, and the change mechanism was explained considering the influence of high temperature on the internal structure of sandstone. Based on the principle of component combination and the theory of micro-element strength distribution, the dynamic statistical damage constitutive model was established, and its parameters had certain physical significance. Compared with the experimental results, the established model can well describe the dynamic stress-strain relationship of sandstone under real-time high temperature.



2016 ◽  
Vol 649 ◽  
pp. 35-38 ◽  
Author(s):  
S.G. Ma ◽  
Z.M. Jiao ◽  
J.W. Qiao ◽  
H.J. Yang ◽  
Y. Zhang ◽  
...  


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.



Sign in / Sign up

Export Citation Format

Share Document