Preparation and Characterization of Polycrystalline Cubic Boron Nitride (PcBN) Compacts by a Pressureless Sintering Process

2010 ◽  
Vol 105-106 ◽  
pp. 38-41 ◽  
Author(s):  
Zhen Huo Ren ◽  
Rui Zhang ◽  
Hai Long Wang ◽  
De Liang Chen ◽  
Ming Liang Li

A novel cost-effective pressureless sintering method has been developed to prepare polycrystalline cubic boron nitride (PcBN) compacts. The effect of feldspar as sintering aids was analyzed in this paper. Various amounts of feldspar from 5 to 15 wt% were added to cBN powders, and the pressureless sintering was conducted at temperatures ranging from 900°C to 1200°C under an air atmosphere. The microstructure, phase, density and microhardness of the as-obtained PcBN compacts were measured and correlated to amounts of Si added and to sintering temperatures. The sample showed superior sintering behavior in comparison to those fabricated using hot pressed sintering. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that feldspar diffused homogeneously and tightly bonded with cBN. But hBN appeared when the sintering temperature even at 900°C, which dramatically affected the property of PcBN compacts. A PcBN compact with a relative density of 91% was obtained at 1100°C and its microhardness was as high as 1000HV.

2016 ◽  
Vol 697 ◽  
pp. 521-525 ◽  
Author(s):  
Yao Ma ◽  
Jian Li ◽  
Hai Long Wang ◽  
Rui Zhang

Polycrystalline cubic boron nitride (PcBN) composites were sintered by high pressure and high temperature sintering (HPHT) at 1450 °C for 3 min under a pressure of 5.0 GPa. Aluminium,boron carbide and carbon in the starting mixture reacts with cubic boron nitride (cBN) to form Al3BC3 and AlN bonding among cBN grains during sintering. X-ray diffraction (XRD) and Scanning electron microscope (SEM) were used to analyze phases and micro-structure of the sintered samples. The dense structure of super hard cBN grains bonded together with Al3BC3 and AlN offers superior hardness and high strength. The Vickers hardness of PcBN composites was 45±5 GPa, and the strength of PcBN composites was 345±15 MPa.


2007 ◽  
Vol 40 (20) ◽  
pp. 6159-6174 ◽  
Author(s):  
W J Zhang ◽  
Y M Chong ◽  
I Bello ◽  
S T Lee

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3035
Author(s):  
Dovydas Karoblis ◽  
Diana Griesiute ◽  
Kestutis Mazeika ◽  
Dalis Baltrunas ◽  
Dmitry V. Karpinsky ◽  
...  

In this study, a highly crystalline bismuth ferrite (BFO) powder was synthesized using a novel, very simple, and cost-effective synthetic approach. It was demonstrated that the optimal annealing temperature for the preparation of highly-pure BFO is 650 °C. At lower or higher temperatures, the formation of neighboring crystal phases was observed. The thermal behavior of BFO precursor gel was investigated by thermogravimetric and differential scanning calorimetry (TG-DSC) measurements. X-ray diffraction (XRD) analysis and Mössbauer spectroscopy were employed for the investigation of structural properties. Scanning electron microscopy (SEM) was used to evaluate morphological features of the synthesized materials. The obtained powders were also characterized by magnetization measurements, which showed antiferromagnetic behavior of BFO powders.


2011 ◽  
Vol 335-336 ◽  
pp. 699-703
Author(s):  
Hui Hui Tan ◽  
Zhu Xing Tang ◽  
Xia Zhao ◽  
He Zhang

This paper introduces Si2ON2-SiC ceramic fabricated by pressureless sintering method and studies the effect of additives, nitriding temperatures on bulk density, porosity, phase composition and microstructure. It is discovered that additives MgO, CeO2 can increase the densities of Si2ON2-SiC ceramic apparently, and MgO additive has a better effect than CeO2. Nitriding temperature also is an important factor. The bulk density of the specimen with MgO additive reaches maximum at 1.91 g/cm3 when sintered at 1450 °C, and the bulk density of specimen with CeO2 additive is 1.86 g/cm3 at the same condition while the bulk density of the specimen without additive is only 1.75 g/cSuperscript textm3. The X-ray diffraction and scanning electron microscopy of the specimens show that the amount of Si2ON2 increase with the sintering temperature increase. But when the temperature is higher than 1500 °C the Si2ON2 grains will decompose into Si3N4, and Si2ON2 will vanish at 1550 °C


Sign in / Sign up

Export Citation Format

Share Document