Enhancement in Bioactivity of Titanium Substrate with Composite Thin Films

2010 ◽  
Vol 105-106 ◽  
pp. 517-519
Author(s):  
Fei Gao ◽  
Fan Xiao ◽  
Zhi Xian Zhang

Nanometer TiO2 microcapsule has potential applications in biochemistry, drug Controlled Release, and catalyst. Meanwhile, Ultraviolet (UV) light-induced bioactivity of titanium substrates is attracting more and more attention nowadays. Composite thin films formed by Nano-TiO2 microcapsule prepared by a novel and versatile technique of layer-by-layer (L-b-L) deposition using the Nanometer latex particles of Polystyrene (PS) as the template together with TiO2 films synthesized at low temperature by the hydrolysis of titanium chloride (TiCl4) precursor was successfully deposited on the different titanium substrates after the template was removed. Thus great expectation was placed on whether UV radiation can enhance the bioactivity of the titanium substrates after the composite thin films being deposited on its surface. The apatite-forming ability was evaluated after the UV-irradiated implants being soaked in simulated body fluid (SBF) within different hours by Scanning electron microscopy (SEM), XRD. The vitro results indicated that UV radiation was favored to formation of apatite on titanium substrates. Besides, the effect of different UV- irradiation time on apatite-forming was different.

2001 ◽  
Vol 672 ◽  
Author(s):  
Hidetaka Anma ◽  
Yuuji Yoshimoto ◽  
Mariko Tanaka ◽  
Hiroyuki Takatsuka ◽  
Yoshinori Hatanaka

ABSTRACTZnO and SiO2 thin films coated on plastic materials were investigated for the protection against solar ultraviolet (UV) radiation and the hard coating. Using diethylzinc (DEZ) as the organic zinc material, we attempt to deposit ZnO thin films on polycarbonate (PC) resin at room temperature by the cathode deposition technique of the plasma enhanced (PE) CVD method. It was found that the rf power and the substrate temperature intensively influenced on the deposition rate. The deposition rate increased with the rf power up to 100W, but decreased with the RF power above 100W, and also decreased with increasing the substrate temperature. In a xenon arc weatherability test, the ZnO-coated PC plates exhibited remarkable protection characteristics against UV radiation. They kept a smooth surface and no- coloring even if UV light irradiated for 1000 hours. Moreover, SiO2film deposited from tetraethoxysilane (TEOS) was over-coated on the ZnO film / PC plates. These films showed a drastic improvement in the hardness. Therefore, these films are expected as the UV-cut and hard coating for the automotive parts.


2016 ◽  
Vol 13 (1) ◽  
pp. 43-49 ◽  
Author(s):  
P. S. Joshi ◽  
D. S. Sutrave

Ruthenium oxide, Manganese oxide and (Ru:Mn)O2 composite thin films have been prepared by 0.02M Ruthenium chloride and Manganese acetate solutions respectively on stainless steel substrates by sol-gel spin coating method. Layer by layer deposition of RuO2 and MnO2 was done for composite films. RuO2: MnO2 composite thin films have been demonstrated to be an excellent material for Supercapacitor application when evaluated with RuO2 and MnO2 thin film electrodes with respect to XRD, SEM, CV, CP and EIS studies. As a result, high specific capacitance of 515 F/g at 10 mV/s with excellent stability and long cycle life was obtained, where specific power and energy were as high as 15.38 Wh/kg and 4.06 KW/kg respectively with loading weight of 0.13 mg/cm2 .Composite films showed changes in structural and morphological features which was admiring for supercapacitor applications. The electrochemical impedance measurement was carried out in 0.1M KOH in the frequency range 10 to 105 Hz. From the analysis it can be concluded that mixed oxide composites have superior capacitive performance to single transition metal oxides as electrodes.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1275 ◽  
Author(s):  
Qais M. Al-Bataineh ◽  
A. A. Ahmad ◽  
A. M. Alsaad ◽  
I. A. Qattan ◽  
Areen A. Bani-Salameh ◽  
...  

We investigate and report on the kinematics of photoisomerization processes of polymer composite thin films based on azo dye methyl red (MR) hosted in polymethylmethacrylate (PMMA) incorporated with Benzyl dimethyl ketal (BDK) as a photo-initiator. Understanding photoisomerization mechanisms is crucial for several optical applications such as Read/Write/Erase (WRE) optical data storage media, UV light Read/Write heads, and UV light sensors. The as-prepared polymer composite thin films are characterized using UV–Vis spectroscopy. Furthermore, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) are employed to investigate the optical, chemical, and morphological properties of trans- and cis-states of PMMA-BDK-MR polymer composite thin films. The presence of the azo dye MR in the composite is essential for the efficient performance of the cis ↔ trans cycles through illumination ↔ thermal relaxation for Write/Read/Erase optical data storage and UV-light sensors. Moreover, UV–Vis and FTIR results confirm the hysteresis cycle of trans- and cis-states and that PMMA-BDK-MR thin films may be regarded as potential candidates for successful Write/Read/Erase optical data storage and UV-light sensors. In addition, the morphology of the thin film surface is investigated by SEM technique. The SEM images indicate that uncured surfaces of PMMA-BDK-MR thin films are inhomogeneous compared with the corresponding surfaces after curing. The transformation from inhomogeneous surfaces to homogeneous surfaces is attributed to the polymerization of thin films by UV curing.


2014 ◽  
Vol 807 ◽  
pp. 91-99 ◽  
Author(s):  
T. Linda ◽  
S. Muthupoongodi ◽  
X. Sahaya Shajan ◽  
S. Balakumar

nanoCdO/ZnO/PVC composite thin films were prepared by simple solution cast method, using tetra hydrofuran as solvent. nanoCdO/ZnO/PVC composite thin films were irradiated by UV light at the range of 365 nm, 312 nm, and 254 nm. The photo-catalytic activity of CdO/ZnO/PVC was examined by photo-catalytic decolourization of congo-red in aqueous solution. nanoCdO/ZnO/PVC composite film exhibited higher photo-catalytic activity under UV light radiation at 365 nm rather than 312 nm & 254 nm. After 90 minutes irradiation by UV light almost 95% congo-red got decolorized. FT-IR studies confirm the complexation behavior of polymer with ZnO and CdO present in the composite.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Heri Sutanto ◽  
Singgih Wibowo ◽  
Iis Nurhasanah ◽  
Eko Hidayanto ◽  
H. Hadiyanto

Silver (Ag) substituted ZnO thin films were successfully deposited onto glass substrates by spray coating technique. Structure, morphology, and optical properties were evaluated by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer, respectively. XRD spectra had polycrystalline wurtzite structure; SEM images showed that thin films had different surface morphology at different Ag doping concentration. From transmittance spectra, thin films transparency decreased as well as band gap energy along with increase of Ag doping concentration. Methylene blue (MB) solution was used as a pollutant in the photodegradation studies. Under UV light irradiation, the optimal Ag doping is 25%, with 83% of the decolorizing efficiencies after 3 h irradiation time and apparent constant (kapp) about 9.69 × 10−3 min−1.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 120
Author(s):  
Catalin Constantin Negrila ◽  
Daniela Predoi ◽  
Rodica V. Ghita ◽  
Simona Liliana Iconaru ◽  
Steluta Carmen Ciobanu ◽  
...  

Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is an important bioactive material for bone tissue reconstruction, due to its highly thermodynamic stability at a physiological pH without bio-resorption. In the present study, the Ag:HAp and the corresponding Ag:HAp + D3 thin films (~200 nm) coating were obtained by vacuum deposition method on Ti substrate. The obtained samples were exposed to different UV irradiation times, in order to investigate the UV light action upon thin films, before considering this method for the thin film’s decontamination. The effects of UV irradiation upon Ag:Hap + D3 are presented for the first time in the literature, marking a turning point for understanding the effect of UV light on composite biomaterial thin films. The UV irradiation induced an increase in the initial stages of surface roughness of Ag:HAp thin film, correlated with the modifications of XPS and FTIR signals. The characteristics of thin films measured by AFM (RMS) analysis corroborated with XPS and FTIR investigation highlighted a process of recovery of the thin film’s properties (e.g., RMS), suggesting a possible adaptation to UV irradiation. This process has been a stage to a more complicated UVA rapid degradation process. The antifungal assays demonstrated that all the investigated samples exhibited antifungal properties. Moreover, the cytotoxicity assays revealed that the HeLa cells morphology did not show any alterations after 24 h of incubation with the Ag:HAp and Ag:HAp + D3 thin films.


Sign in / Sign up

Export Citation Format

Share Document