Crystallization Kinetics of Li+-Doped TiO2 Films Prepared by Sol-Gel Dip Coating

2010 ◽  
Vol 105-106 ◽  
pp. 750-753
Author(s):  
Feng Zhou ◽  
Ying Qing Fu ◽  
Kai Ming Liang

The crystallization behavior and microstructure of Li+-doped TiO2 thin films prepared by sol-gel dip coating were investigated by means of differential themal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization apparent activation energy (E) both in the absence and in the presence of Li+ ion was also measured with Kissinger method. As a result the E values of Li+-doped TiO2 thin film were decreased, thus the crystallization of non-crystalline to anatase and antase to rutile was promoted.

2021 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Dewi Suriyani Che Halin ◽  
Kamrosni Abdul Razak ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Izrul Izwan Ramli ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Ag/TiO2 thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively.


1994 ◽  
Vol 9 (8) ◽  
pp. 2133-2137 ◽  
Author(s):  
Hideki Yoshioka

Thin films in the system (1 - x) PbTiO3−xLa2/3TiO3 were prepared by the sol-gel and dip-coating methods. Phases deposited in the films and the lattice parameters as a function of the composition were investigated by the x-ray diffraction method. The solid solutions with a perovskite structure were formed as a single phase with x up to 0.9. For the composition of x = 1.0, metastable La-Ti-O perovskite phase with a small amount of the impurity phase, La2Ti2O7, was obtained. Simulation of x-ray diffraction patterns based on the defect structure model shows that the structure of the La-Ti-O perovskite phase includes randomly distributed cation vacancies at the A-site, namely (La2/3□1/3)TiO3.


2012 ◽  
Vol 455-456 ◽  
pp. 110-114 ◽  
Author(s):  
Xuan Dong Li ◽  
Xi Jiang Han ◽  
Wen Ying Wang ◽  
Xiao Hong Liu ◽  
Yan Wang ◽  
...  

Nb-doped TiO2 powders with different concentrations of Nb have been synthesized by a sol-gel method and characterized by a series of technologies including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy. The photocatalytic activity of Nb-doped TiO2 is evaluated by degradation efficiency of methyl orange in aqueous solution. The results indicate that the photocatalytic activity of Nb-doped TiO2 synthesized with a Nb/Ti molar ratio of 5% is higher than that of TiO2 under the visible light.


2012 ◽  
Vol 557-559 ◽  
pp. 1687-1690
Author(s):  
Tong Liu ◽  
Qiang Li

A novel nano-TiO2 coating is prepared by vacuum dip-coating TiO2 sol–gel onto the anodized aluminum surface. The particles of TiO2 anatase is filled into the Al2O3 nano-pores formed by anodization. The structure and composition of the coatings are characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The preponderant bacterium is identified as Pseudomonas lindanilytica strain IPL-1 through analysis of the sequences of S16 nRNA gene segment. In addition, the electrochemical results show that the TiO2 coatings significantly reduce the corrosion rate of Al substrates. The UV reflection spectroscopy is used to determine and analyze that the nano-TiO2 coatings could improve the light photo catalytic activity which decreases microbial influencing corrosion acceleration inhibition (MICI).


2010 ◽  
Vol 92 ◽  
pp. 131-137 ◽  
Author(s):  
Qiu Hua Yuan ◽  
Pei Xin Zhang ◽  
Li Gao ◽  
Hai Lin Peng ◽  
Xiang Zhong Ren ◽  
...  

The crystallization behavior of MgO-Al2O3-SiO2 glass-ceramics by sol-gel technology was investigated by using x-ray diffraction (XRD), differential thermal analysis (DTA), Scanning electron microscopy (SEM). The results showed that: (1)α-cordierite phase was precipitated when the green body was calcined at 1050°C, and α-cordierite of high purity and stability could be formed at 1100°C; (2) Adding an appropriate amount of low melting point glass powder into the green body may provide liquid-phase environment during the sintering process, which will help enhance the tightness density of glass-ceramic, and thus improve its flexural strength.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
B. Sadeghi ◽  
R. Sarraf-Mamoory ◽  
H. R. Shahverdi

LiMn2O4spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4phosphate layer on surfaces of LiMn2O4cathode particles.


Author(s):  
Martin Reichardt ◽  
Sébastien Sallard ◽  
Petr Novák ◽  
Claire Villevieille

Lithium chromium pyrophosphate (LiCrP2O7) and carbon-coated LiCrP2O7 (LiCrP2O7/C) were synthesized by solid-state and sol–gel routes, respectively. The materials were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and conductivity measurements. LiCrP2O7 powder has a conductivity of ∼ 10−8 S cm−1, ∼ 104 times smaller than LiCrP2O7/C (∼ 10−4 S cm−1). LiCrP2O7/C is electrochemically active, mainly between 1.8 and 2.2 V versus Li+/Li (Cr3+/Cr2+ redox couple), whereas LiCrP2O7 has limited electrochemical activity. LiCrP2O7/C delivers a reversible specific charge up to ∼ 105 mAh g−1 after 100 cycles, close to the theoretical limit of 115 mAh g−1. Operando XRD experiments show slight peak shifts between 2.2 and 4.8 V versus Li+/Li, and a reversible amorphization between 1.8 and 2.2 V versus Li+/Li, suggesting an insertion reaction mechanism.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 671-673
Author(s):  
PENG XIAO ◽  
WANLU WANG

The Fe 3+- TiO 2 thin films obtained through sol-gel method were characterized by x-ray diffraction, AFM and Raman spectroscopy. It was found that TiO 2 films consisted of nanometer particles. The experimental results shows that the nanometer TiO 2 thin films doped with Fe 3+ were greatly improved in the activity aspect. This may be ascribed to change their structure and electrical properties after doping with Fe 3+. The results were discussed theoretically in detail.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


2021 ◽  
Vol 21 (2) ◽  
pp. 279
Author(s):  
Nur Munirah Safiay ◽  
Rozina Abdul Rani ◽  
Najwa Ezira Ahmed Azhar ◽  
Zuraida Khusaimi ◽  
Fazlena Hamzah ◽  
...  

In this research, TiO2 thin films were prepared using a simple sol-gel spin coating process. The films were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Ray (EDX), X-ray diffraction (XRD) and Ultraviolet–visible Spectrophotometer in order to investigate the influence of different annealing temperatures to the structural and optical properties of TiO2. The surface morphology images from FE-SEM display a uniform layer of nanoparticles with a sample of 500 °C possess the most uniform and the visible spherical grain of TiO2 nanoparticles. EDX spectra confirm the presence of Ti and O elements in the samples. The structural properties from the XRD pattern demonstrate that the films are crystalline at a temperature of 500 and 600 °C and the peak (101) intensity was increased as the annealing temperature increased. They exist in the anatase phase at the preferred plane orientation of (101). The calculated crystallite size for 500 and 600 °C samples is 19.22 and 28.37 nm, respectively. The films also possessed excellent absorption in the ultraviolet (UV) region with optical band gap energy ranging from 3.32 to 3.43 eV. These results can be fundamental for the fabrication of a UV sensing device.


Sign in / Sign up

Export Citation Format

Share Document