scholarly journals Influence of Different Annealing Temperatures on the Structural and Optical Properties of TiO2 Nanoparticles Synthesized via Sol-Gel Method: Potential Application as UV Sensor

2021 ◽  
Vol 21 (2) ◽  
pp. 279
Author(s):  
Nur Munirah Safiay ◽  
Rozina Abdul Rani ◽  
Najwa Ezira Ahmed Azhar ◽  
Zuraida Khusaimi ◽  
Fazlena Hamzah ◽  
...  

In this research, TiO2 thin films were prepared using a simple sol-gel spin coating process. The films were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Ray (EDX), X-ray diffraction (XRD) and Ultraviolet–visible Spectrophotometer in order to investigate the influence of different annealing temperatures to the structural and optical properties of TiO2. The surface morphology images from FE-SEM display a uniform layer of nanoparticles with a sample of 500 °C possess the most uniform and the visible spherical grain of TiO2 nanoparticles. EDX spectra confirm the presence of Ti and O elements in the samples. The structural properties from the XRD pattern demonstrate that the films are crystalline at a temperature of 500 and 600 °C and the peak (101) intensity was increased as the annealing temperature increased. They exist in the anatase phase at the preferred plane orientation of (101). The calculated crystallite size for 500 and 600 °C samples is 19.22 and 28.37 nm, respectively. The films also possessed excellent absorption in the ultraviolet (UV) region with optical band gap energy ranging from 3.32 to 3.43 eV. These results can be fundamental for the fabrication of a UV sensing device.

2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2014 ◽  
Vol 989-994 ◽  
pp. 656-659
Author(s):  
Ping Cao ◽  
Yue Bai

Al co-doped ZnCoO thin film has been prepared by a sol-gel method. The structural and optical properties of the sample were investigated. X-ray diffraction and UV absorption spectroscopy analyses indicate that Al3+ and Co2+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2013 ◽  
Vol 641-642 ◽  
pp. 547-550 ◽  
Author(s):  
Ying Xiang Yang ◽  
Hong Lin Tan ◽  
Cheng Lin Ni ◽  
Chao Xiang

Un-doped and (Cu, Al)-doped ZnO thin films were prepared by sol-gel spin coating technique on glass substrate. The effect of(Cu, Al)incorporation on the structural, morphological and optical properties of the Zinc oxide (ZnO)film was investigated by means of X-ray diffraction, scanning electron microscopy and UV-vis spectrophotometer. It has been found that the grain sizes, Optical band gap and the preferred orientation growth of (002) plane were decreased with increasing of (Cu, Al) dopants amount in ZnO films.


2014 ◽  
Vol 925 ◽  
pp. 401-405 ◽  
Author(s):  
Sharul Ashikin Kamaruddin ◽  
Mohd Zainizan Sahdan ◽  
Kah Yoong Chan ◽  
Nayan Nafarizal ◽  
Hashim Saim

The Zinc Oxide (ZnO) films were fabricated on glass coated with indium tin oxide (ITO) substrate by sol-gel spin coating technique. With regard to the preheating temperatures, the effects of growth mechanism ZnO films on the optical and structural properties were investigated. In this study, the preheating temperatures were varied from 250°C, 280°C, and 300°C. The X-ray diffraction (XRD) and ultraviolet-visible (UV-Vis) spectroscopy were used to examine the structural and optical properties of the ZnO films. The XRD results revealed that, the ZnO films are highly crystalline for all samples which are dominated by (002) peak orientation. Meanwhile, observation from optical results indicated that, the variation of transmittance spectra were turn out and it is proportional to the preheating temperatures used. Overall, we realized that the properties of the ZnO films in the sol-gel spin coating technique strongly depend on the preheating temperature and need to be considered as important factor to obtain the high-quality of the ZnO films. Keywords: Sol-gel, Zinc oxide film, X-ray diffraction


2015 ◽  
Vol 727-728 ◽  
pp. 280-283
Author(s):  
Ping Cao ◽  
Yue Bai ◽  
Zhi Qu

Al doped ZnO thin film have been prepared by a sol-gel method. The structural, and optical properties of the sample were investigated. X-ray diffraction and X-ray absorption spectroscopy analyses and UV absorption spectroscopy analyses indicate that Al3+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


2013 ◽  
Vol 537 ◽  
pp. 224-228
Author(s):  
Yi Liu ◽  
Hong Mo Huang ◽  
Xiao Dong Lin

TiO2 thin films were prepared on quartz glasses by pulsed laser deposition (PLD) using a KrF laser excimer. The crystalline structure was characterized by X-ray diffraction, and the optical properties of the films were investigated using spectroscopic ellipsometry and UV-vis spectra respectively. The effects of the PLD conditions, including substrate temperature and O2 pressure on the crystalline structure and the optical properties of the films were investigated. The results indicated that there are a suitable substrate temperature and an O2 pressure which is favorable for the synthesis of anatase-type TiO2.


2019 ◽  
Vol 19 (01) ◽  
pp. 1850046
Author(s):  
Mahboubeh Yeganeh ◽  
Maliheh Mousavi

In this work, the effects of Fe/Ni co-doping on structural and optical properties of TiO2 thin films were investigated by the X-ray diffraction, scanning electron microscope and UV-visible spectroscopy. The optical properties of transmittance, extinction coefficient, refractive index, real and imaginary parts of dielectric constant of the thin films, prepared by spray pyrolysis, revealed that the absorption in visible region increases due to the influence of Fe/Ni co-doping. The widening of the gap energies is observed as a result of doping. The increased optical gap as a consequence of doping can be explained by decreasing the size of nanoparticles, as confirmed by SEM and increasing the formation of oxygen vacancies as a result of Ni[Formula: see text] substitution to Ti[Formula: see text] and appearance of the Burstein–Moss effect.


Author(s):  
A.S. Ismail ◽  
M.H. Mamat ◽  
M.F. Malek ◽  
M.M. Yusoff ◽  
N.D. Md. Sin ◽  
...  

<p>Intrinsic zinc oxide (ZnO)/Al-doped ZnO (AZO) homojunction film was prepared using two-step immersion processes. The film was characterized using field emission scanning electron microscopy, X-ray diffraction (XRD), Raman spectroscopy, and ultraviolet–visible spectrophotometer to investigate their structural and optical properties. The surface morphology image displays that the ZnO deposited on the nanorod surfaces in layer form with average diameter of nanorods about 95 nm. The structural properties of XRD pattern demonstrate that the film possessed good crystallinity with the preferred orientation at (002) plane. The film also possessed excellent absorption in the ultraviolet (UV) region with optical band gap energy of 3.22 eV. These results indicate that the film has a good potential for optical-based device such a UV sensor.</p>


2018 ◽  
Vol 7 (2) ◽  
pp. 88-97
Author(s):  
Abderhamane Boutelala ◽  
Fouzia Bourfaa ◽  
Mohamed Mahtali

Titanium oxide (TiO2) is one of the most important semiconductors because of their properties. This study was carried out to investigate the influence of the number of layers of Co -doped TiO2 thin films obtained by sol–gel method on the photocatalytic activity. The crystalline structure of films is characterised by means of X-ray diffraction and Raman spectroscopy. All the films were of anatase phase and the particle size was in nanoscale. The surface morphology was studied by atomic force microscopy. The optical properties were investigated by UV-visible spectroscopy. The photocatalytic properties of the samples were tested on the degradation of methylene blue dye solution. The results indicated that photocatalysis is more important when the number of dipping of films increases.Keywords: Photocatalysis, X-ray diffraction, TiO2, thin films, methylene blue.


Sign in / Sign up

Export Citation Format

Share Document