scholarly journals Surface Modification of LiMn2O4for Lithium Batteries by Nanostructured LiFePO4Phosphate

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
B. Sadeghi ◽  
R. Sarraf-Mamoory ◽  
H. R. Shahverdi

LiMn2O4spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4phosphate layer on surfaces of LiMn2O4cathode particles.

2013 ◽  
Vol 734-737 ◽  
pp. 2155-2158 ◽  
Author(s):  
Yun Hai Wang ◽  
Zi Zhou Nie ◽  
Yong Rong Liang

Nickel and antimony doped tin oxide (NATO) electrodes were prepared by sol-gel dip-coating method. The effect of doping levels was investigated via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The electrochemical ozone generation efficiency was also tested. The results showed that sol-gel prepared electrodes had a smoother surface morphology and lower current efficiency for ozone generation than electrodes prepared by traditional pyrolysis method. The nickel and antimony doping lead to a decrease in the crystallites size, while its effects on ozone generation efficiency were complex.


2012 ◽  
Vol 557-559 ◽  
pp. 1691-1694 ◽  
Author(s):  
Qi Fu Bao ◽  
Wei Xia Dong ◽  
Jian Er Zhou

Smooth and dense films of CaTiO3 were prepared on the glass substrate by a sol-gel dip coating method. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), scanning electron microscope (SEM) and UV–vis optical spectroscopy. The results showed that pH and water contents had a great influence on morphology of CaTiO3 film. When water content is 0.128 mol at PH=1.56, CaTiO3 film presents an absorption in the UV region and the band gap is estimated to 3.35 ev. The results show the large potential of this material in electronic structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
V. L. Chandraboss ◽  
B. Karthikeyan ◽  
J. Kamalakkannan ◽  
S. Prabha ◽  
S. Senthilvelan

The TiO2/SiO2 and ZnO/SiO2 composite films were prepared by sol-gel dip coating method. The surface morphology and crystal structure of thin films were characterized by means of scanning electron microscopy (SEM) with elementary dispersive X-ray analysis (EDX) and X-ray diffractometer (XRD). Optical properties of films have been investigated using ultraviolet and visible spectroscopy (UV-visible spectroscopy). The photocatalytic activity was established by testing the degradation and decolorization of methyl green (MG) from aqueous solution with artificial UV-light.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


2013 ◽  
Vol 704 ◽  
pp. 275-280
Author(s):  
Janina Setina ◽  
Alona Gabrene ◽  
Inna Juhnevica ◽  
Gundars Mezinskis

The paper describes two methods of syntheses of iron oxides, microstructure and morphology of magnetite nanoparticles. Nanocomposite thin films of SiO2/Fe3O4 have been prepared with sol-gel dip coating technique: dip-coating from SiO2/Fe3O4 sol and encapsulation magnetite between two SiO2 layers. Structural and morphological characteristics of iron oxides particles and prepared film were analyzed by X-Ray Diffraction, SEM, FTIR, DTA, AFM. AFM topography of surface and measurements of roughness has shown that using iron oxide encapsulation between two SiO2 layers to provide the even distribution of iron oxide, results as high quality films with low Rq values 1.5 2.7 nm.


2016 ◽  
Vol 848 ◽  
pp. 717-721
Author(s):  
Li Yun Chen ◽  
Xiao Ping Liao ◽  
Wei Zhong Jiang ◽  
Jia Yi Ye ◽  
Hui Le Jin ◽  
...  

nanosize TiO2/SiO2 thin films were deposited by sol-gel dip-coating method on enamel substrates. Crystal structure, micro-structure, hydrophilic property, gloss property was investigated by X-ray diffract meter, scanning electron microscope, CCD camera, enamel gloss meter. The results show that the hydrophilic property of the enamel was greatly increased by heating the enamel with coating TiO2/SiO2 film; the gloss property of the enamel surface greatly increased after the enamel coated with TiO2/SiO2 film. The main crystals in TiO2/SiO2 film on the enamel were anatase when the baking temperature was below the 700°C.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sanja Ćulubrk ◽  
Željka Antić ◽  
Vesna Lojpur ◽  
Milena Marinović-Cincović ◽  
Miroslav D. Dramićanin

Herein we presented hydrolytic sol-gel synthesis and photoluminescent properties of Eu3+-doped Gd2Ti2O7pyrochlore nanopowders. According to Gd2Ti2O7precursor gel thermal analysis a temperature of 840°C is identified for the formation of the crystalline pyrochlore phase. Obtained samples were systematically characterized by powder X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The powders consist of well-crystalline cubic nanocrystallites of approximately 20 nm in size as evidenced from X-ray diffraction. The scanning and transmission electron microscopy shows that investigated Eu3+-doped Gd2Ti2O7nanopowders consist of compact, dense aggregates composed entirely of nanoparticles with variable both shape and dimension. The influence of Eu3+ions concentration on the optical properties, namely, photoluminescence emission and decay time, is measured and discussed. Emission intensity as a function of Eu3+ions concentration shows that Gd2Ti2O7host can accept Eu3+ions in concentrations up to 10 at.%. On the other hand, lifetime values are similar up to 3 at.% (~2.7 ms) and experience decrease at higher concentrations (2.4 ms for 10 at.% Eu3+). Moreover, photoluminescent spectra and lifetime values clearly revealed presence of structural defects in sol-gel derived materials proposing photoluminescent spectroscopy as a sensitive tool for monitoring structural changes in both steady state and lifetime domains.


2020 ◽  
Vol 33 (1) ◽  
pp. 240-244
Author(s):  
Nirmal Singh ◽  
Avinash Kumar Rai ◽  
Ritu Vyas ◽  
Rameshwar Ameta

Nanocrystalline cobalt(II) oxide doped with nickel was prepared using the sol-gel method and employed as a photocatalyst for azure A dye degradation under visible light. The prepared photocatalyst was analyzed using energy-dispersive X-ray (EDX) spectroscopy, field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) techniques. The photocatalytic activity of Ni-doped CoO under different working parameters, like concentration, pH, dosage (Ni-doped and undoped CoO), light intensity for the degradation of azure A dye was also optimzed. It was observed that the dye degradation rate improved after doping. Approximately 76% and 85% of azure A dye was degraded within 90 min through undoped and Ni-doped CoO, respectively.


Sign in / Sign up

Export Citation Format

Share Document