Study of Shaking Table Test on Seismic Performance of 750 kV Post Insulator

2014 ◽  
Vol 1065-1069 ◽  
pp. 1491-1496
Author(s):  
Sen Lin ◽  
Zhi Cheng Lu ◽  
Zhu Bing Zhu ◽  
Po Gao ◽  
Sheng Li

The applicability of seismic waves for the seismic performance estimation of 750 kV post insulator has been investigated in full-scale shaking table test. the input seismic waves comprise El Centro seismic wave, Landers seismic wave, sine beat wave and artificial standard wave. The testing results indicate that, high dynamic responses of the equipment can be obtained under artificial standard wave condition. In addition, due to comprehensive enveloping ability and gentle spectral curve, artificial standard wave is ideal for the seismic performance evaluation of 750 kV post insulator in the test. An finite element model has been developed and numerical seismic analysis has been performed. Satisfactory match between the simulated and measured results reveals the reliability of the test. The achievements obtained in this paper are helpful in choosing reasonable input wave for shaking table test, and also provide technical support on determining seismic capacity of high voltage electrical equipment.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tingting Wang ◽  
Jianhua Shao ◽  
Chao Zhao ◽  
Wenjin Liu ◽  
Zhanguang Wang

To investigate the seismic performance of buckling-restrained braces under the earthquake action, the shaking table test with a two-story 1/4 scale model is carried out for the ordinary pure steel frame and the buckling-restrained bracing steel frame with low-yield-point steel as the core plate. The failure modes, dynamic characteristics, acceleration response, interstory drift ratio, strain, shear force, and other mechanical properties of those two comparative structures subjected to different levels of seismic waves are mainly evaluated by the experiment. The test results show that under the action of seismic waves with different intensities, the apparent observations of damage occur in the pure frame structure, while no obvious or serious damage in the steel members of BRB structure is observed. With the increase in loading peak acceleration for the earthquake waves, the natural frequency of both structures gradually decreases and the damping ratio gradually increases. At the end of the test, the stiffness degradation rate of the pure frame structure is 11.2%, while that of the buckling-restrained bracing steel frame structure is only 5.4%. The acceleration response of the buckling-restrained bracing steel frame is smaller than that of the pure steel frame, and the acceleration amplification factor at the second story is larger than that at the first story for both structures. The average interstory drift ratios are, respectively, 1/847 and 1/238 for the pure steel frame under the frequent earthquake and rare earthquake and are 1/3000 and 1/314 for the buckling-restrained bracing steel frame, which reveals that the reduction rate of lateral displacement reaches a maximum of 71.71% after the installation of buckling-restrained brace in the pure steel frame. The strain values at each measuring point of the structural beam and column gradually increase with the increase of the peak seismic acceleration, but the strain values of the pure steel frame are significantly larger than those of the buckling-restrained bracing steel frame, which indicates that the buckling-restrained brace as the first seismic line of defense in the structure can dramatically protect the significant structural members. The maximum shear force at each floor of the structure decreases with the increase in height, and the shear response of the pure frame is apparently higher than that of the buckling-restrained bracing structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jian-Bo Dai ◽  
Gui-Di Zhang ◽  
Cheng-Tao Hu ◽  
Kai-Kai Cheng

The buried oil and gas pipeline is a linear structure with infinite length. In the shaking table test of its seismic response, it is necessary to input the spatially related multipoint seismic wave considering the propagation characteristics of ground motion. The multipoint seismic excitation shaking table tests and loading scheme of buried oil and gas pipelines are designed and formulated. The synthesis method of spatial correlation multipoint seismic wave for the buried oil and gas pipeline test is proposed in this study. The values of relevant parameters are analyzed, and corresponding program is compiled by MATLAB. The results show that the developed multipoint excitation shaking table seismic wave input scheme is reasonable. At the same time, the synthesized multipoint seismic wave based on the actual seismic record and artificial random simulation seismic wave can meet the test requirements, which suggests the testing effect is good.


2015 ◽  
Vol 104 (1) ◽  
pp. 1-8
Author(s):  
Kenichi Tahara ◽  
Yasuhito Sasaki ◽  
Yukihiro Sato ◽  
Satoshi Sasaki ◽  
Shojiro Motoyui

2020 ◽  
Vol 8 ◽  
Author(s):  
Changwei Yang ◽  
Liang Zhang ◽  
Yang Liu ◽  
Denghang Tian ◽  
Xueyan Guo ◽  
...  

Taking a bedding rock slope with weak structural plane as the prototype, a shaking table test with a similarity ratio of 1:10 is designed and carried out. By analyzing the acceleration and displacement responses at different positions of the slope, the seismic response and instability mechanism of rock bedding slope under different seismic amplitudes, frequencies, and durations are studied. Before the failure of the slope, the rock bedding slope shows an obvious “elevation effect” and “surface effect” under the action of Wenchuan Wolong earthquake wave with different amplitudes. With the increase of the amplitude of the input seismic wave, the elevation effect and the surface effect gradually weaken. When the amplitude of the seismic wave reaches 0.9 g, the rock bedding slope begins to show damage, which demonstrates that the difference of PGA amplification coefficients on both sides of the weak structural plane increases significantly. Compared with the Kobe seismic wave and Wenchuan Wolong seismic wave, the excellent frequency of EL Centro seismic wave is closer to the first-order natural frequency of slope model and produces resonance phenomenon, which leads to the elevation effect of PGA amplification coefficient more significantly. Through the analysis of the instability process of rock bedding slope, it can be found that the failure mechanism of the slope can be divided into two stages: the formation of sliding shear plane and the overall instability of the slope.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yunxiu Dong ◽  
Zhongju Feng ◽  
Jingbin He ◽  
Huiyun Chen ◽  
Guan Jiang ◽  
...  

Puqian Bridge is located in a quake-prone area in an 8-degree seismic fortification intensity zone, and the design of the peak ground motion is the highest grade worldwide. Nevertheless, the seismic design of the pile foundation has not been evaluated with regard to earthquake damage and the seismic issues of the pile foundation are particularly noticeable. We conducted a large-scale shaking table test (STT) to determine the dynamic characteristic of the bridge pile foundation. An artificial mass model was used to determine the mechanism of the bridge pile-soil interaction, and the peak ground acceleration range of 0.15 g–0.60 g (g is gravity acceleration) was selected as the input seismic intensity. The results indicated that the peak acceleration decreased from the top to the bottom of the bridge pile and the acceleration amplification factor decreased with the increase in seismic intensity. When the seismic intensity is greater than 0.50 g, the acceleration amplification factor at the top of the pile stabilizes at 1.32. The bedrock surface had a relatively small influence on the amplification of the seismic wave, whereas the overburden had a marked influence on the amplification of the seismic wave and filtering effect. Damage to the pile foundation was observed at 0.50 g seismic intensity. When the seismic intensity was greater than 0.50 g, the fundamental frequency of the pile foundation decreased slowly and tended to stabilize at 0.87 Hz. The bending moment was larger at the junction of the pile and cap, the soft-hard soil interface, and the bedrock surface, where cracks easily occurred. These positions should be focused on during the design of pile foundations in meizoseismal areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Wang ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Zhubing Zhu ◽  
Shujun Zhang

Pillar electrical equipment is an important part of substations. The application of composite materials in pillar equipment can facilitate the improvement of the seismic performance of electrical equipment. In this paper, the test of elastic modulus and bending rigidity was conducted for individual composite elements in insulators and arresters, and the calculation formula for bending rigidity at the composite flange cementing connections was put forward. The numerical simulation model for the earthquake simulation shaking table test of ±1,100 kV composite pillar insulators was established, in which the bending rigidity value for the flange cementing part was obtained by the test or calculation formula. The numerical simulation results were compared with the earthquake simulation shaking table test results, the dynamic characteristics and seismic response of the model were compared, respectively, the validity of the proposed calculation formula for flange bending rigidity of composite cementing parts was verified, and a convenient and effective means was provided for calculating the seismic performance of composite electrical equipment.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Shujin Li ◽  
Cai Wu ◽  
Fan Kong

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.


Sign in / Sign up

Export Citation Format

Share Document