Research on Safety Assessment of Blasting Construction in Highway Tunnel Project

2014 ◽  
Vol 1065-1069 ◽  
pp. 383-387
Author(s):  
Jian Tian ◽  
Peng Guo ◽  
Zhi Qiang Li

The drilling and blasting method is popular for the construction of highway tunnel,which is easy to cause serious production safety accidents.Based on safety risk analysis of tunnel blasting construction,safety risk probability assessment index system of tunnel blasting construction was put forward,which consist of establishment of blasting scheme,belection of blasting equipment,and safety management,etc.Safety risk probability assessment model was constructed based on the fuzzy comprehensive evaluation,which are divided in five level.The risk matrix method was used to assess risk level of blasting construction,considering blasting construction risk probability and the consequence.Through the case on ChenJiagou tunnel in the province of Hebei proves the feasibility of evaluation method,and the corresponding risk control measurements were proposed.

2021 ◽  
Vol 248 ◽  
pp. 03020
Author(s):  
Zhuang Guofeng

The quality of road and bridge engineering is directly related to the safety of the transportation industry. In the construction of highway bridges, it is particularly important to strictly control the construction quality. Combining the analytic hierarchy process and the fuzzy comprehensive evaluation method, the AHP-fuzzy comprehensive evaluation method is used to obtain the current road bridge construction safety risk level. According to the different risk levels, effective measures should be taken to avoid unsafe accidents. On this basis, historical risk cases can be analyzed to find problems in the safety assessment of highways and bridges, and effective construction safety management and control measures can be put forward to ensure the vigorous development of my country’s highway and bridge industry.


2013 ◽  
Vol 438-439 ◽  
pp. 1612-1618
Author(s):  
Yong Jia Song ◽  
Cong Cong Jin ◽  
Xian Cai Zhang ◽  
Jing Li

This paper proposes a new risk assessment model on account of the fuzziness and uncertainty of risk factors in the reservoir after earthquake. The paper adopts methods of information entropy and fuzzy mathematics to assess risk level of the model. After analyzing the statistical data of earthquake-damaged reservoirs, we present comprehensive weight composed of importance and improved entropy weight. Base on comprehensive weight, we can adopt membership function to establish single factor evaluation of the model. Moreover, we combine fuzzy weighting method to assess risk level of a reservoir after earthquake. The result shows that risk level of the reservoir is high-risk. The case study verifies the practicability and rationality of the risk assessment method. Therefore, the method could be applied in the emergency rescue and reinforcement for reservoir after earthquake.


2013 ◽  
Vol 859 ◽  
pp. 511-514 ◽  
Author(s):  
Jing Jing Wan ◽  
Ying Hua Song

This paper has put forward a comprehensive assessment model of the emergency management capability of the coal mine accidents which is based on AHP and fuzzy comprehensive evaluation, and has made an empirical analysis. Firstly, the meaning and the key contents of the emergency management capability of coal mine accidents was elaborated. Secondly, the comprehensive evaluation index system of coal mine accidents emergency management capability was established. And then, the first class index weights were determined by AHP. Finally, this paper made a comprehensive evaluation of a certain regions emergency management capability of coal mine accidents by means of the fuzzy comprehensive evaluation.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1486-1490
Author(s):  
Yin Fang ◽  
Zhi Qiang Zhao ◽  
Chun Cheng Gao ◽  
Yong Dai ◽  
Shu Hong Shi

Trading regulatory risk arises prominently in the preliminary formulation of a unified and interconnected electricity market in China. Risk indices, evaluation models and methods as well as index weights are three important aspects of a comprehensive trading regulatory risk evaluation. In this paper, firstly, on the basis of the current electricity market environment in China, systematic trading regulatory risk indices used to quantify the risk level of the unified and interconnected electricity market are established. Secondly, evaluation models and a evaluation method of the trading regulatory risk are developed on the basis of synthesis of fuzzy inference and analytic hierarchy process (AHP). The fuzzy set approach is employed to identify the membership degree of each index to various risk levels, while the AHP is used to acquire the weights of the proposed trading regulatory risk indices. Finally, a simulation based case study on the trading regulatory risk evaluation is presented to illustrate the effectiveness of the proposed indices and the evaluation method.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kai Hu ◽  
Junwu Wang ◽  
Han Wu

Frequent extreme climate events and rapid global urbanization have amplified the occurrence of accidents such as waterlogging or the overflow of pollution in big cities. This has increased the application scenarios of large-sized deep drainage tunnel projects (LSDDTPs). The scientific and accurate evaluation of the construction safety risks of LSDDTP can effectively reduce the corresponding economic losses and casualties. In this paper, we employed the hierarchical holographic model to construct the safety risk list of LSDDTPs in terms of the risk source and construction unit. Based on social network analysis, we then screened key indicators and calculated the weights of all secondary indicators from the correlation between risk factors. We subsequently developed a construction safety risk assessment model of LSDDTPs based on the matter-element extension method. The Donghu Deep Tunnel Project in Wuhan, China, was selected as a case study for the proposed method. The results of empirical research demonstrated that eight indicators (e.g., failure to effectively detect the change of the surrounding environment of the tunnel project) were key factors affecting the construction safety risk of IV, which is within the acceptable risk level. Our proposed model outperformed other methods (the fuzzy comprehensive evaluation, analytic hierarchy process, entropy weight method, and comprehensive weight method) in terms of scientific validity and research advancements.


2010 ◽  
Vol 20-23 ◽  
pp. 196-201
Author(s):  
Ge Ning Xu ◽  
Fan Jiang

By combined fuzzy comprehensive evaluation with AHP (Analytic Hierarchy Process) together, a safety assessment model for overhead traveling crane is set up in regard to deficiency of safety assessment method for crane at present, which can evaluate safety of overhead traveling crane in-service qualitatively and quantitatively. Through a safety analysis and assessment on general overhead traveling crane, the result of assessment is in accord with the practical situation of overhead traveling crane. It can reflect more fully the safety of the whole crane system and the influence and level of each factor to whole crane system safety, witch an effective synthetic evaluation method is put forward for the safety evaluation of crane.


2013 ◽  
Vol 662 ◽  
pp. 993-998
Author(s):  
Liang Sheng Zhou ◽  
Zhen Dong Tan ◽  
Wei Guo Wu

The research and manufacture of the military logistics equipment systems always brings problems in quality management for its complexity and particularity. To solve these problems, a analysis on equipment quality management is conducted. A comprehensive study on reliability, fault diagnosis, and risk analysis models are also performed. The reliability analysis of the system is fulfilled using a method of combined fuzzy inference and network analysis. This method solves the limitations of the traditional network analysis method, of which the result is defined for every failure mode. The abnormality of parameters corresponds to faults in the system, which can be used to establish a knowledge database and a fault diagnosis expert system. A quantitative risk assessment model is set up using a fuzzy comprehensive evaluation method and an incident loss comprehensive evaluation theory. Finally, the above method and model are examined for new trailer mounted equipment. The results validate the proposed method


Author(s):  
Dongmei Huang ◽  
Weijun Li ◽  
Xikun Chang ◽  
Yunliang Tan

In order to evaluate the stability of deep surrounding rock, all of the affecting factors should be theoretically identified. However, some factors have slight impacts on the stability of deep surrounding rock compared with others. To conduct an effective risk assessment, key factors should be first extracted. The analytic hierarchy process (AHP) and grey relation analysis (GRA) methods are integrated to determine the key factors. First, the AHP method is applied to sort the factors by calculating the weights of them. Seven out of fifteen factors are extracted as the key factors, which account for 80% of the weights. Further, the GCA method is used to validate the effects of these key factors by analyzing the correlation between the performance of each factor and that of the reference. Considering the influence of these key factors and experts’ judgements, the multilevel fuzzy comprehensive evaluation method is adopted to obtain the risk level of the deep surrounding rock stability. Finally, the risk assessment of the deep surrounding rock in the E-Zhuang coal mine of Chinese Xinwen Mining Area illustrates the operability of the proposed method.


2013 ◽  
Vol 726-731 ◽  
pp. 913-916
Author(s):  
Chao Lv ◽  
Hui Li Gong

The snow disaster is one of the main disasters in prairie pastoral areas of China. Once the snow disaster occurs, it will cause the death of a large amount of livestock due to the starvation and freezing weather. Therefore, it is especially important to forecast the risk of the snow disaster scientifically and reasonably. This paper established the snow disaster risk assessment index system firstly, and then established the snow disaster risk assessment model based on multi-layer fuzzy comprehensive evaluation. Finally, the massive experiment monitors and the contrast confirmation with the historical case data, showed that this model is practical and feasible, which conducted a useful attempt to further improve snow disaster risk assessment ability in pastoral areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Han Wu ◽  
Sen Liu ◽  
Denghui Liu ◽  
Junwu Wang

The health, safety, and environment (HSE) risk assessment of major sewage transport tunnel projects (MSTTPs) is of great significance to guarantee sewage treatment, ecological environment protection, and sustainable development. To accurately evaluate the HSE risk of MSTTPs at the construction stage and effectively deal with their randomness and ambiguity, a risk assessment model based on the structural entropy weight method (SEWM) and the cloud model is put forward in this paper. First, an index system for MSTTPs was constructed via a literature review and expert interviews, and the rough sets method was used to filter the indicators. Then, weights were calculated by the SEWM, which is able to consider both subjective and objective factors of the weight calculation. Finally, to clarify the randomness and ambiguity in the evaluation, the HSE risk level was determined by the cloud similarity. The model was applied to the Donghu Deep Tunnel Project in Wuhan, China, and the results demonstrated that its HSE risk level was medium, which was acceptable. The index related to construction safety had the largest weight. A humid environment, improper power utilization, and sludge and mud pollution were found to be the most influential risk indicators. The risk level could be intuitively and qualitatively judged by the figure evaluation cloud, providing a vivid and rapid evaluation tool for the emergency decision-making of project managers, and the risk level could be quantitatively judged by the calculation of cloud similarity. Moreover, through the comparison with gray correlation degree, set pair analysis, and fuzzy comprehensive evaluation method evaluation results, we prove the scientificity and effectiveness of the proposed model. The research results provide a valuable reference for the project management of MSTTPs at the construction stage.


Sign in / Sign up

Export Citation Format

Share Document