Finite Element Analysis of Ship Lock Chamber Structure

2014 ◽  
Vol 1065-1069 ◽  
pp. 597-600
Author(s):  
Chao Sun ◽  
Zi Chang Shang Guan ◽  
Xiao Xuan Wang

While considering various structural and material requirements, 3D models of ship chambers in the ship lock structure using finite element modeling (FEM) software ANSYS. By using FEM software to set up the contacting sections between the base plate, refilled soils and foundation, analyses were done to caluculate the forces exerted on the structure of the ship chamber. After checking the reasonability of the calculated results, discussions were made on the calculation process to allow for future empirical calculations.

2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


2011 ◽  
Vol 117-119 ◽  
pp. 1535-1542 ◽  
Author(s):  
Hua Wei Zhang ◽  
Wei Xia ◽  
Zhi Heng Wu

In this paper, the clamping unit of a two-platen injection molding machine was modeled by Pro/ENGINEER, and was imported to Altair HyperWorks. In HyperMesh module, the finite element model was set up, ANSYS has been used in the finite element analysis of the clamping unit and the deformation and stress results were obtained. Based on the topology optimization of HyperWorks/OptiStruct, recommendations to improve the structure of the clamping mechanism are presented; the results showed that less material was used while its performance was maintained.


Author(s):  
Samuel J. Miller ◽  
Hakan Ozaltun

This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark the performance of proposed fuel for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the mid-plane were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, ABAQUS. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models to account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not representative. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.


2013 ◽  
Vol 405-408 ◽  
pp. 921-924
Author(s):  
Xue Feng Cai ◽  
Zheng Zhang ◽  
Yong Chao Ma ◽  
Ji Zhong Zhou

Light steel temporary building is commonly used in the construction site, with advantages on simple structure, repeat used and small deadweight. There are still not enough researches and relevant standards to conduct the design and construction of the buildings. In order to precede to theoretical study on integral structure of light steel temporary buildings a method which used to set up finite element analysis model about integral structure of light steel temporary buildings was proposed in this paper. The method is based on finite element analysis software, Ansys. Using this method a monolayer integral structure, a two-story integral structure and a trilaminar integral structure model were set up. Lateral displacement under design load of the integral structure was solved out by these finite element models.


Author(s):  
G. B. Sinclair ◽  
N. G. Comier ◽  
J. H. Griffin ◽  
G. Meda

The stress analysis of dovetail attachments presents some challenges. These challenges stem from the high stress gradients near the edges of contact and from the nonlinearities attending conforming contact with friction. To meet these challenges with a finite element analysis, refined grids are needed with mesh sizes near the edges of contact of the order of one percent of the local radii of curvature there. A submodeling procedure is described which can provide grids of sufficient resolution in return for moderate computational effort. This procedure furnishes peak stresses near contact edges which are converging on a sequence of three submodel grids, and which typically do converge to within about five percent.


2013 ◽  
Vol 712-715 ◽  
pp. 1391-1394
Author(s):  
Zhi Li ◽  
X. S. Zhao ◽  
D. W. Zhang

Modal analysis is one way of studying the dynamic characteristics of the mechanical. In order to study the dynamic characteristics of machine tool,numerical machine model is set up with finite element analysis software,of which validity is verified by experimental modal analysis.The experimental test also provide the boundary conditions, so as to further structure modification and dynamic characteristic design


2021 ◽  
Author(s):  
Hongxia Liao ◽  
Liqiang Chen ◽  
Junfeng Chen

Abstract Background: Proper sealing of laryngeal mask airways (LMAs) is critical for airway management in clinical use. A good understanding of the LMA sealing mechanism provides a scientific foundation to improve the sealing of LMAs to reduce the incidence of adverse events. However, no existing methods provide a systematic study on the LMA sealing mechanics. Methods: Computer-aided 3D models are established to visualize LMA – pharynx interactions directly. The finite element analysis (FEA) is adopted to study the LMA sealing mechanics. Results: Two case studies are provided in the paper. The LMA is loaded with a low cuff pressure (CP) (9 mmHg) to investigate the cause of leaking in Case I, and with a high CP (45 mmHg) to detect the critical points of high mucosal pressure in Case II. The established 3D models provide initiative visualization of the sealing situations. The visualization results are verified by pressure distribution along the contacting surface generated from FEA as the quantitative study. Conclusions: Compared with the existing methods, the proposed method does not introduce additional cost, and can provide globe monitoring on the LMA and a comprehensive understanding of sealing mechanics in all areas. The findings on the sealing mechanism and corresponding suggestions for clinic use of LMAs and LMA design have also been presented in the paper.


Author(s):  
LeQin Wang ◽  
HongKiat Chia

The design of pipeline protection with rock armour berms has been traditionally based on model testing because there has been no closed-form analytical solution available to resolve the complex interaction between the anchor, anchor chain, seabed soil and rock armour. Compared to the costly physical model test, a numerical procedure properly set up allows effective and extensive study on various rock berm configurations. It is expected that better optimized pipeline rock armour protection berm can be designed to offer appreciable savings on project cost. The authors have developed a Finite Element Analysis (FEA) based procedure which can predict the clearance between the anchor fluke tip and pipeline as well as the pushing force on the pipeline during anchor dragging. Both the clearance and pushing force can be used to assess the potential anchor damage to a pipeline with rock backfill protection. The FEA results have been successfully validated against results obtained from physical model tests. A series of numerical tests are performed considering the variations in the trench profile, the armour rock shape, rock particle size and grading properties etc. The protection mechanism of the rock armour berm, with regard to the above factors, is discussed to provide a better understanding for the significance of each parameter in the protection design. Guidelines in achieving an optimized rock berm protection design are also given.


Sign in / Sign up

Export Citation Format

Share Document