An Interpolation-Based Method for Multidimensional Extrapolation

2014 ◽  
Vol 1079-1080 ◽  
pp. 654-659
Author(s):  
Ru Chao Shi ◽  
Yong Chi Li

This paper presents an interpolation-based method for multidimensional extrapolation. A series of interpolation formulations are proposed to extrapolate functions normal to the interface between two regions. Theoretical proofs and relevant analysis are also presented. The method developed maintains the characteristics of implicit interface. The interface inside every cell is treated smoothly by assuming that curvature is equal everywhere. The method developed and numerical results are verified by comparing to the results by PDE method and theoretical results. Numerical tests demonstrate that the method developed is first-order accuracy and also more efficient in numerical implementation and more accurate than PDE method.

Author(s):  
C. H. Lamarque ◽  
O. Janin

Abstract We study the performances of several numerical methods (Paoli-Schatzman, Newmark, Runge-Kutta) in order to compute periodic behavior of a simple one-degree-of-freedom impacting oscillator. Some theoretical results are given and numerical tests are performed. We compare mathematical and numerical results using our simple example exhibiting either finite or infinite number of impacts per period. Comparison of exact and numerical solution provides a practical order for each scheme. We conclude about the use of the different numerical methods.


2013 ◽  
Vol 7 (2) ◽  
pp. 390-403 ◽  
Author(s):  
Janak Sharma ◽  
Himani Arora

We present a derivative free method of fourth order convergence for solving systems of nonlinear equations. The method consists of two steps of which first step is the well-known Traub's method. First-order divided difference operator for functions of several variables and direct computation by Taylor's expansion are used to prove the local convergence order. Computational efficiency of new method in its general form is discussed and is compared with existing methods of similar nature. It is proved that for large systems the new method is more efficient. Some numerical tests are performed to compare proposed method with existing methods and to confirm the theoretical results.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Jan Nordström ◽  
Andrew R. Winters

AbstractWe prove that the most common filtering procedure for nodal discontinuous Galerkin (DG) methods is stable. The proof exploits that the DG approximation is constructed from polynomial basis functions and that integrals are approximated with high-order accurate Legendre–Gauss–Lobatto quadrature. The theoretical discussion re-contextualizes stable filtering results for finite difference methods into the DG setting. Numerical tests verify and validate the underlying theoretical results.


2003 ◽  
Vol 3 (1) ◽  
pp. 189-201 ◽  
Author(s):  
Ilya D. Mishev

AbstractA new mixed finite volume method for elliptic equations with tensor coefficients on rectangular meshes (2 and 3-D) is presented. The implementation of the discretization as a finite volume method for the scalar variable (“pressure”) is derived. The scheme is well suited for heterogeneous and anisotropic media because of the generalized harmonic averaging. It is shown that the method is stable and well posed. First-order error estimates are derived. The theoretical results are confirmed by the presented numerical experiments.


Author(s):  
Qahtan Adnan Abed ◽  
Viorel Badescu ◽  
Adrian Ciocanea ◽  
Iuliana Soriga ◽  
Dorin Bureţea

AbstractMathematical models have been developed to evaluate the dynamic behavior of two solar air collectors: the first one is equipped with a V-porous absorber and the second one with a U-corrugated absorber. The collectors have the same geometry, cross-section surface area and are built from the same materials, the only difference between them being the absorbers. V-corrugated absorbers have been treated in literature but the V-porous absorbers modeled here have not been very often considered. The models are based on first-order differential equations which describe the heat exchange between the main components of the two types of solar air heaters. Both collectors were exposed to the sun in the same meteorological conditions, at identical tilt angle and they operated at the same air mass flow rate. The tests were carried out in the climatic conditions of Bucharest (Romania, South Eastern Europe). There is good agreement between the theoretical results and experiments. The average bias error was about 7.75 % and 10.55 % for the solar air collector with “V”-porous absorber and with “U”-corrugated absorber, respectively. The collector based on V-porous absorber has higher efficiency than the collector with U-corrugated absorber around the noon of clear days. Around sunrise and sunset, the collector with U-corrugated absorber is more effective.


1994 ◽  
Vol 29 (1) ◽  
pp. 43-55 ◽  
Author(s):  
M Raoof ◽  
I Kraincanic

Using theoretical parametric studies covering a wide range of cable (and wire) diameters and lay angles, the range of validity of various approaches used for analysing helical cables are critically examined. Numerical results strongly suggest that for multi-layered steel strands with small wire/cable diameter ratios, the bending and torsional stiffnesses of the individual wires may safely be ignored when calculating the 2 × 2 matrix for strand axial/torsional stiffnesses. However, such bending and torsional wire stiffnesses are shown to be first order parameters in analysing the overall axial and torsional stiffnesses of, say, seven wire stands, especially under free-fixed end conditions with respect to torsional movements. Interwire contact deformations are shown to be of great importance in evaluating the axial and torsional stiffnesses of large diameter multi-layered steel strands. Their importance diminishes as the number of wires associated with smaller diameter cables decreases. Using a modified version of a previously reported theoretical model for analysing multilayered instrumentation cables, the importance of allowing for the influence of contact deformations in compliant layers on cable overall characteristics such as axial or torsional stiffnesses is demonstrated by theoretical numerical results. In particular, non-Hertzian contact formulations are used to obtain the interlayer compliances in instrumentation cables in preference to a previously reported model employing Hertzian theory with its associated limitations.


Author(s):  
Ernesto Copello ◽  
Nora Szasz ◽  
Álvaro Tasistro

Abstarct We formalize in Constructive Type Theory the Lambda Calculus in its classical first-order syntax, employing only one sort of names for both bound and free variables, and with α-conversion based upon name swapping. As a fundamental part of the formalization, we introduce principles of induction and recursion on terms which provide a framework for reproducing the use of the Barendregt Variable Convention as in pen-and-paper proofs within the rigorous formal setting of a proof assistant. The principles in question are all formally derivable from the simple principle of structural induction/recursion on concrete terms. We work out applications to some fundamental meta-theoretical results, such as the Church–Rosser Theorem and Weak Normalization for the Simply Typed Lambda Calculus. The whole development has been machine checked using the system Agda.


1992 ◽  
Vol 46 (3) ◽  
pp. 479-495 ◽  
Author(s):  
Stephen Joe ◽  
David C. Hunt

A lattice rule is a quadrature rule used for the approximation of integrals over the s-dimensional unit cube. Every lattice rule may be characterised by an integer r called the rank of the rule and a set of r positive integers called the invariants. By exploiting the group-theoretic structure of lattice rules we determine the number of distinct lattice rules having given invariants. Some numerical results supporting the theoretical results are included. These numerical results are obtained by calculating the Smith normal form of certain integer matrices.


Sign in / Sign up

Export Citation Format

Share Document