scholarly journals Concrete based on sulfur binder being modified with inorganic additives

2018 ◽  
Vol 212 ◽  
pp. 01013
Author(s):  
Vadim Balabanov ◽  
Victor Baryshok ◽  
Nikita Epishkin

The sharply continental climate of the Irkutsk region is characterized by wide temperature intervals throughout the year. The repeated cyclicity of freezing and thawing of building materials in the water-saturated state influences the change in technical characteristics and the durability of concrete products and structures. The concrete products’ features in such climatic conditions create the need for the production of concretes with improved indicators of physical and mechanical properties. The effect of modifying additives on the technological characteristics of sulfur concrete is established. The effect of all elements of sulfur concrete on its strength and frost resistance. The composition of sulfuric concrete is obtained, which meets all the requirements and also has high strength and increased frost resistance. Formulations with a certain ratio of structural sulfuric concrete mixtures were developed. As a result of the use of technical sulfur in the composition of concrete products, the problem of utilizing annually accumulating reserves of technical sulfur is partially solved. The strength properties of sulfuric concretes easily compete with high-quality brands of concrete, special types of concretes that have in their composition additives.

2021 ◽  
Vol 1043 ◽  
pp. 55-59
Author(s):  
Vladimir Morgun ◽  
Denis Votrin ◽  
Aleksei Revyakin

The urgency of improving the performance properties of concrete, as the most common building materials, is noted. The reasons for the increased demand for products made of high-strength gas-filled concrete are stated. It is shown that the current volume of polymer fibers production makes it possible to predict the possibility of their widespread use in construction. The information on the physical and mechanical properties of synthetic fiber, which is important for its successful use as dispersed reinforcement of foam concrete mixtures, is presented. The technology of manufacturing experimental samples and methods of their testing are described. It has been established that the introduction of any synthetic fiber into the foam mixture formulation improves the structural properties of foam concrete, however, the measure of efficiency depends on the ratio between the concrete moduli of elasticity and fiber. The greater the value of the elastic modulus of the fiber used, the higher the technical effect of its use in fiber-reinforced concrete for structural purposes can be.


Author(s):  
Melnikov Andrey E., ◽  
◽  
Ze Zhang, ◽  
Grib Nikolay N., ◽  
Camil Jakub Shabo, ◽  
...  

The results of laboratory tests carried out on rock samples of the Kharbalakhskoye coalfield located in Central Yakutia revealed significant secondary changes having taken place in the host rocks containing the coal. Evidently, under transformation processes, it is not only the composition of the rocks that had changed, but also the nature of structural bonds that have a great influence on their physical and mechanical properties. Thus, the ultimate strength values of coal-containing sandstone and siltstone samples under uniaxial compression vary from 20 to 30 MPa, while under uniaxial tension, the ultimate strength values range from 6 to 10 MPa. These relatively low numerical values pertaining to the physicomechanical properties of rocks, which are generally atypical for long-flame coal deposits, are almost 50% lower than those of analogous rocks hosting other coal deposits in Russia. It is considered that the mechanical strength properties of the rocks of the Kharbalakhskoye field are due to significant cryogenic processes. A comparative analysis of the properties of core samples obtained from boreholes drilled in 2019 with samples from a quarry obtained several decades ago reveals signs of transformation of rocks in the Kharbalakhskoye field due to phase transitions of freezing and thawing water.


2019 ◽  
Vol 57 (2) ◽  
pp. 78-86
Author(s):  
Lina Xu ◽  
Lei Niu

Polypropylene fiber is widely used as a reinforcing material in composite materials of various engineering projects, because it has high strength and corrosion resistance. In this study, with the purpose of examine the impact of discrete polypropylene fiber on frost resistance of cemented soil, cemented soil treated with polypropylene fiber is used as the research sample. Firstly, the impact of curing time, fiber content and length on the strength of cemented soil has been considered. And then, the frost resistance characteristics of cemented soil reinforced by polypropylene fiber with the content of 0.5% have been investigated. The results show that with the development of curing time, the strength of cemented soil increases logarithmically. By adding an appropriate amount of polypropylene fiber, the strength of the specimen may be improved. In this study, cemented soil reinforced by polypropylene fiber 0.1% in content and 3 mm in length has the best reinforcement effect. After 21 cycles of freezing and thawing processes, a sharp decline in strength of cemented soil without fiber, and the strength loss ratio is up to 45%. There are cracks in the specimens, and some of the specimens have broken off. Differently, after 21 freeze-thaw cycles, the strength of the cemented soil with fiber decreased less, and the strength loss ratios are between 1 and 13%, and there are only small cracks on the surface of specimens. The results show that adding discrete polypropylene fiber is a suitable method to prevent the generation and development of internal cracks in the cemented soil during freezing and thawing, thereby improving the frost resistance. These results can be used as a reference for the application of cemented soil reinforced with fiber in seasonal frozen regions.


2021 ◽  
Vol 899 ◽  
pp. 137-143
Author(s):  
Yulia A. Sokolova ◽  
Marina A. Akulova ◽  
Baizak R. Isakulov ◽  
Alla G. Sokolova ◽  
Berikbay B. Kul’sharov ◽  
...  

The present paper considers the study of creep and deformation properties of sulfur-containing arbolit exposed to various compression stresses. Investigating the creep of lightweight arbolit concretes greatly affecting the performance of bearing and envelope structures draws a special attention during the last years. This issue is of particular relevance in the regions with hot and sharp continental climate. Arbolit concrete is one of the lightest building materials with low thermal conductivity and good soundproof properties. The modern postulates of theory and practice of creation, development of high-strength arbolit concretes on the base of composite sulfur-containing binders have become the methodological framework of the present research. While carrying out scientific research, the following standard measuring and analysis methods of physical and mechanical properties have been used for sulfur-containing arbolit composites. Experimental tests have been implemented on the 28-days samples made of sulfur-containing arbolit, with the cotton plant footstalks as an organic component. The researched samples were vapor sealed with the purpose to eliminate overlapping the processes of contraction and creep. The experimental results have shown that the analysis of prisms deformation in time demonstrates certain derivation from the pattern. Deformation of prisms made of sulfur-containing arbolit loaded at the low stress level were growing at a slower rate that the same deformations at a higher stress level. No derivation has been observed for the prisms of sulfur-containing haydite concrete. For both types of concrete, creep deformation has reached the values exceeding completely recoverable deformation by a factor of 2 or all the samples, the rapid growth of creep deformation has been observed after loading, followed by the gradual slowdown of deformation growth. For sulfur-containing lightweight concretes, as the test shown, the rate of creep deformation growth depends on the hardening curve in time reflecting the process of concrete hardening. This, if compared with sulfur-containing lightweight concretes, creep of sulfur-containing arbolit concrete is significantly lower that eventually leads to the loss of creep deformation at the same stress level. The obtained results can be used when manufacturing an efficient wall material for residential construction, including seismic areas.


2020 ◽  
Vol 992 ◽  
pp. 253-258
Author(s):  
M.P. Lebedev ◽  
V.N. Tagrov ◽  
E.S. Lukin

The article deals with the manufacture of modern structural ceramic materials from clay and loam deposits of the Republic of Sakha (Yakutia). The importance and relevance of the development of the production of building materials from local raw materials is emphasized, since this will certainly affect the effectiveness of the construction complex as a whole. The successful development of the construction complex is capable of not only stimulating growth in all sectors of the economy, but also contributes to solving the most pressing social problems. Today, Yakutia has huge reserves of mineral raw materials for the production of a wide range of building materials and products. Of practical interest are wall materials made from clay soils. Given the features of the region’s raw material base, this work focuses on additional processing of traditional material. Controlling the complex physicochemical and structural-mechanical transformations that occur during heat treatment, a methodology has been developed for creating a composite material that will allow competitive innovative materials with enhanced strength properties to be produced with a reinforcing element with a glassy phase matrix of mullite crystals. The fabricated samples have a wide range of physical and mechanical properties and allow using it as a high-quality structural building ceramics, as well as industrial floor technical tile.


2012 ◽  
Vol 58 (2) ◽  
pp. 185-198 ◽  
Author(s):  
M. Iwanski ◽  
A. Chomicz-Kowalska

Abstract The technology of recycling with foamed bitumen is a new technology of road rehabilitation. Due to the climatic conditions in the Central European countries, road pavement structure should be moisture and frost resistant. Because of its specific production conditions, this is especially important for pavements rehabilitation with the cold recycling technology. Determining the physical and mechanical properties, as well as moisture and frost resistance, depends on binder and filler contents. They are the key elements before its use for road building. The tests presented here have been performed on mineral recycled base mixes with foamed bitumen. The material from the existing layers was used. The content of bitumen binder amounted to 2.0%, 2.5%, 3.0% and 3.5%, while that of cement to 1.0%, 1.5%, 2.0%, 2.5%. The results were subject to the optimization process. This allowed to state that with the use of 2.5% foamed bitumen and 2.0% of cement, the base had the required properties, as well as the moisture and frost resistance.


2015 ◽  
Vol 1085 ◽  
pp. 312-315
Author(s):  
Oleg L. Khasanov ◽  
Edgar S. Dvilis ◽  
Zulfa G. Bikbaeva ◽  
Valentina V. Polisadova ◽  
Alexey O. Khasanov ◽  
...  

Ceramics samples in the form of a parallelepiped with high strength characteristics have been made. For the manufacture of the ceramics samples a powder mixture from submicron В4С powder with additives (1 wt%, 5 wt%, 10 wt%) of boron carbide nanopowder was used. The physical properties of the powder mixtures and strength properties of sintered ceramics have been studied. It was shown that the use of submicron fractions of the boron carbide powder together with nanoadditives is a determining factor in the formation of dense fine-grained structure providing improved physical and mechanical properties of the ceramics.


Author(s):  
A.A. Aliyev ◽  
A.Yu. Аmpilogov

The paper considers the issues of temperature cycling and ice accretion on external paint coatings of aircraft as well as the negative effects of these processes expressed in periodic tension-compression strain and absorption of atmospheric moisture by surface microasperities with its subsequent freezing resulting in gradual cavity wedging. We note that laboratory testing methods recreating the temperature cycling that simulates actual operating conditions of aircraft paint coatings are increasingly labour-intensive. We substantiate the feasibility of developing a computational method for frost resistance estimation in specific operating conditions. The method takes into account the combination of contraction stresses, excessive cooling and wedging caused by ice build-up. We assume the main physical and mechanical properties of ice and paint to be homogeneous and equal to cumulative average values, and the linear thermal expansion coefficients of the substrate and coating to be constant and not dependent on temperature. We disregard ice friction over the microasperity cavities and in-flight loads on the paint coating caused by incident air flows and structural deformations of the aircraft. We present a method of computing frost resistance of aircraft paint coating subjected to cyclical ice accretion, which is based on the method of equivalent stresses. We tested frost resistance of a polyesterurethane coating over a duralumin plate in the range of --50 to 25 °C for F = 2000 freezing and thawing cycles. We performed a temperature cycling computation of the factor of safety for frost resistance in the case of periodic ice accretion. The results obtained are in good agreement with experimental data


Author(s):  
Loganina V. I. ◽  
Zhegera Ch.V.

Proved the possibility of using amorphous aluminosilicate as a modifying agent for the adhesive dry mixes. Are given the data on the microstructure and chemical composition of the amorphous aluminosilicates. Installed , that the microstructure of the synthetic additives is characterized by particles of round shape, dimensions 5,208-5,704 μm, Also there are particles of elongated shape in size 7.13-8.56 μm. Predominate chemical elements O, Si, Na, S, and Al in quantity 60.69%, 31.26%, 24.23%, 18.69% and 8.29% respectively. Described the character changes in the rheological properties of cement-sand mortar, depending on the percentage of additives. Determined, that the introduction in the cement-sand mortar the additive based on amorphous aluminosilicate leads to higher values of plastic strength. Are given the model of cement stone strength using synthetic additives in the formulation. The results of the evaluation of the frost resistance of cement-based tile adhesives with the use of amorphous aluminosilicates as a modifying additive are presented. In the article is determined the mark on frost resistance of tile glue and frost resistance of the contact zone of tile glue. The evaluation of the performance properties of the layer of tile adhesive on the basis of cement, dry mixes. The calculation of the value of displacement of the adhesive layer made on the basis of the developed recipes cement dry mixes applied to a vertical surface. Experimental data obtained values of displacement tiles relative to the substrate. Described the results of physical and mechanical properties of tile adhesive made on the basis of the developed adhesive dry mix formulations.


2018 ◽  
Vol 20 (2) ◽  
pp. 65-70
Author(s):  
Endah Kanti Pangestuti ◽  
Sri Handayani ◽  
Mego Purnomo ◽  
Desi Christine Silitonga ◽  
M. Hilmy Fathoni

Abstract. The use of coal waste (Fly Ash) is currently being developed in building materials technology, as a high-strength concrete mix material. This study aims to determine the strength of concrete by adding fly ash as a substitute for cement in high-strength concrete mixtures. This research was conducted with an experimental method to obtain results and data that would confirm the variables studied. The total number of specimens used in this study were 36 pieces with different sizes of cube tests which were 15 cm x 15 cm x 15 cm. A total of 36 concrete samples were used to test the compressive strength of concrete with a percentage of Fly Ash in  0% (normal concrete), 20%, 25% and 30% with a concrete treatment age of 7 days, 21 days and 28 days. A total of 12 more samples were used to test water absorption in concrete at 28 days of maintenance. Each percentage percentage of Fly Ash uses 3 concrete test samples. The increase in compressive strength occurs at 7, 21 and 28 days in concrete. However, the compressive strength of concrete produced by concrete using the percentage of Fly Ash is always lower than the value of normal concrete compressive strength. From testing the compressive strength of concrete at 28 days of treatment with content of 0%, 20%, 25% and 30% Fly Ash obtained results of 45.87 MPa, 42.67 MPa, 40.89 MPa, and 35.27 MPa respectively


Sign in / Sign up

Export Citation Format

Share Document