Study on Tool Wear in Green Milling Ni-Based Superalloy

2015 ◽  
Vol 1095 ◽  
pp. 865-868
Author(s):  
Hui Wang ◽  
Yun Lu ◽  
Jing Jing Liu

In order to solve the difficult machining problem of Ni-based superalloy, the water vapor and ionized air was applied as coolant and lubricant in milling process. The tool wear experiments on water vapor, ionized air, wet and dry cutting with carbide tool YG6A machining Ni-based superalloy GH4169 was carried out. The result showed that tool wear was quickly on milling GH4169 with carbide tool YG6A, and increased with the cutting speed.The flank wear land was uneven and the boundary wear was serious. During the ionized air condition the flank wear was more slowly than wet and dry cutting condition, the values of flank wear were reduced about 15 and 10 percent respectively. In addition, the result showed that The milling force and machined surface roughness increased with the flank wear.

2015 ◽  
Vol 667 ◽  
pp. 231-236 ◽  
Author(s):  
Xiao Fan Yang ◽  
You Sheng Li ◽  
Guo Hong Yan ◽  
Ju Dong Liu ◽  
Dong Min Yu

Carbon fiber-reinforced plastics (CFRP) are typical difficult-to-machine materials, which is easy to produce many defects such as burrs, dilacerations, layering in milling process. And selecting the appropriate cutting tool has become the key to machining CFRP with high quality and efficiency. In the paper, the machining principle of milling CFRP with new type end mill was analyzed. The diamond coating of general right-hand end mill, cross-flute router and fine-cross-nick router were used to cutting CFRP under the same cutting condition. Through the comparative analysis of the workpiece’s surface quality and tool wear, it concluded that: compared with right-hand diamond coated end mill, cross-flute diamond coated router or fine-cross-nick diamond coated router could effectively suppress the appearance of burrs and dilacerations; abnormal coating peeling appeared in the flank face of right-hand diamond coated end mill, forming the boundary wear, which accelerated wear failure; the flank wear of diamond coated cross-flute router and fine-cross-nick router were both abrasive wear. Due to having more cutting edge than cross-flute router in cutting process, the flank wear of fine-cross-nick router was slower, and the tool life was longer. So it was more suitable for cutting CFRP.


2012 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Andanastuti Muchtar ◽  
Nik Faizu Nik Kundor

Projek ini dijalankan bertujuan untuk mengkaji kesan proses pengisaran terhadap keutuhan permukaan keluli perkakas D2. Dalam kajian ini, keluli perkakas kerja sejuk AISI D2 yang telah dikeraskan kepada 62 HRC dimesin menggunakan sisip karbida bersalut CVD boleh indeks yang dipegang oleh perkakas pengisaran hujung berdiameter 20 mm. Siri–siri ujian dijalankan dalam keadaan kering. Penilaian ke atas permukaan yang dimesin melibatkan kekasaran permukaan dan analisis mikrostruktur. Keputusan kajian menunjukkan bahawa tiada hubungan yang jelas di antara variasi kelajuan pemotongan dan suapan terhadap kekasaran permukaan. Umumnya, permukaan yang dihasilkan adalah sangat licin dengan nilai Ra berada dalam julat 0.10 μm – 0.43 μm dan analisis permukaan pada sampel–sampel ujikaji juga mendapati hampir tiada perubahan dapat dikesan pada mikrostruktur bahagian bawah permukaan yang dimesin. Walau bagaimanapun, pada kelajuan pemotongan tertinggi (160 m/min) dan suapan yang tinggi (0.02 mm/sisip), terdapat kesan termampat dan terherot pada mikrostruktur pada kedalaman yang sangat cetek iaitu lebih kurang 2.2 μm dari permukaan termesin. Kata kunci: Keutuhan permukaan, keluli perkakas terkeras, pengisaran hujung, mikrostruktur, perkakas karbida bersalut The effect of milling process on the surface integrity of newly machined surface of D2 tool steel is presented. The hardened AISI D2 (62 HRC) was machined under dry cutting conditions using a 20 mm diameter end–milling tool with indexable CVD coated carbide insert. Analyses revealed that the variation in cutting speeded and feed did not significantly affect the surface roughness of the machined surface. Generally, the surfaces produced are very smooth with Ra values in the range of 0.1 – 0.43 μm, and studies showed almost no microstructure alteration on the machined surfaces. However, at the highest cutting condition, i.e. a cutting speed of 160 m/min, and feed of 0.02 mm/tooth, some compression and distortion effects were detected on the microstructure at the very shallow depth of approximately 2.2 μm from the machined surface. Key words: Surface integrity, hardened tool steel, end-milling, microstructure, coated carbide tool


2010 ◽  
Vol 33 ◽  
pp. 555-559
Author(s):  
Rong Di Han ◽  
Hui Wang ◽  
Y. Zhang ◽  
Q.W. Yao

The machinability of nickel-based superalloy GH4169 is very poor, the traditional machining of GH4169 using the cutting fluids with the active additives causes environmental and health problems, which is out of the request of the sustainable development strategy. In this paper a new green cutting technology with overheated water vapor as coolants and lubricants was proposed to achieve the aim of green cutting and high productivity. Cutting experiments and tool wear tests using carbide tool YG6 under dry cutting, emulsion and water vapor were performed. The cutting force, cutting temperature, machined surface quality and tool life were investigated; the curve of flank tool wear and relation between tool life and cutting velocity was carried out. The results of experiments indicated that during water vapor condition, the cutting force and cutting temperature was reduced, the machined surface roughness was improved, and the tool life was longed, respectively, and the higher velocity was taken during the some tool wear condition compared to dry cutting. The research results show that green cutting was achieved associated with overheated water vapor cooling and lubricating, at he same time the machined surface quality and production efficiency was increased.


2015 ◽  
Vol 727-728 ◽  
pp. 65-68
Author(s):  
Hui Wang ◽  
Fu Sheng Ni ◽  
Xiu Lin Ji

The machinability of Titanium alloy Ti6Al4V is poor, so the new green cutting technology with water vapor and ionized air as coolants and lubricants was proposed to achieve the aim of efficient and green cutting for Ti6Al4V. In this paper, the milling formation and milling force were studied in machining Ti6Al4V with application of ionized air and water vapor for cooling lubricants. A set of milling tests using carbide tool YG6 were performed under dry cutting, oil emulsion, water vapor and ionized air, respectively. The results of tests indicated that the milling formation was decreased with increasing feed per tooth and the milling force increased with increasing feed per tooth, the milling formation and milling force were reduced during water vapor and ionized air condition.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4836-4840
Author(s):  
ROBERT STRAKA ◽  
◽  
JOZEF PETERKA ◽  
TOMAS VOPAT ◽  
◽  
...  

The article compares two cutting edge preparation methods and their influence on the machined surface roughness of the difficult to cut nickel alloy Inconel 718 and the tool wear of cutting inserts made of cemented carbide. The manufacturing and preparation process of cutting inserts used in the experiment were made by Dormer Pramet. The preparation methods used in the experiment were drag finishing and brushing. Cutting parameters did not change during the whole turning process to maintain the same conditions in each step of the process and were determined based on tests for a semi-finishing operation of the turning process. To obtain durability of 25 to 30 minutes with controlled development of the tool wear the cutting parameters were determined with cooperation with the cutting inserts manufacturer.


2011 ◽  
Vol 317-319 ◽  
pp. 556-559
Author(s):  
Yue Zhang ◽  
Tong Jiang ◽  
Li Han ◽  
Qi Dong Li ◽  
Tai Li Sun ◽  
...  

Green cutting is one of the developing tends in the industry field. Water vapor can be introduced in metal cutting as coolant and lubricant due to its pollution-free, generating easily and unneeded disposal. Therefore, a special generating system is developed to produce suitable water vapor, and a simulation to the velocity of water vapor jet flow is presented. Then tool wear was investigated and a new capillary model is proposed, based on the experimental results. According to the boundary-layer theory, the kinetics equations of flow were solute. The velocity and flux of molecule are presented. In the capillary, the adsorption of tool-chip interface results in boundary lubricating film; the conical shape of capillary limits the depth of coolant and lubricant penetrating; and the negative press is the motility for coolant and lubricant penetrating. The study results show water vapor can decrease tool wear about 10% times and 20% comparing to cutting fluids and dry cutting, and water vapor could be a potential solution of green cutting.


1982 ◽  
Vol 46 (6) ◽  
pp. 657-664
Author(s):  
Shigeo Zaima ◽  
Yuzo Takatsuji ◽  
Shigeru Yamada
Keyword(s):  

2020 ◽  
Vol 997 ◽  
pp. 85-92
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
Abdullah Yassin ◽  
Shahrol Mohamaddan ◽  
Syaiful Anwar Rajaie ◽  
Muhammad Isyraf Mazlan ◽  
...  

One of the most significant factors in machining process or metal cutting is the cutting tool performance. The rapid wear rate of cutting tools and cutting forces expend due to high cutting temperature is a critical problem to be solved in high-speed machining process, milling. Near-dry machining such as minimum quantity lubrication (MQL) is regarded as one of the solutions to solve this problem. However, the function of MQL in milling process is still uncertain so far which prevents MQL from widely being utilized in this specific machining process. In this paper, the mechanism of cutting tool performance such as tool wear and cutting forces in MQL assisted milling is investigated more comprehensively and the results are compared in three different cutting conditions which is dry cutting, wet cutting (flooding) and MQL. The MQL applicator is constructed from a household grade low-cost 3D printing technique. The chips surface of chips formation in each cutting condition is also observed using Scanning Electron Microscopy (SEM) machine. It is found out that wet cutting (flooding) is the best cutting performance compare to MQL and dry cutting. However, it can also be said that wet cutting and MQL produced almost the same value of tool wear and cutting forces as there is negligible differences in average tool wear and cutting forces between them based on the experiment conducted.


1963 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
H. Takeyama ◽  
R. Murata

This paper treats a fundamental investigation of tool wear and tool life mainly from the viewpoint of flank wear. The result reveals that the mechanism of tool wear in turning can be classified into two basic types: The mechanical abrasion which is directly proportional to the cutting distance and independent of the temperature; and the other is, so to speak, a physicochemical type which is considered to be a rate process closely associated with the temperature, of course. Although it depends upon the cutting condition which type of wear plays a more important role, the latter is predominant under usual conditions. According to the analyses and the experimental results, it has been found out that the tool life from the standpoint of flank wear can be predicted to a first approximation by the initial cutting temperature.


Sign in / Sign up

Export Citation Format

Share Document