Heterojunction Properties of p-CuO/n-CdS Diode

2015 ◽  
Vol 1098 ◽  
pp. 1-5 ◽  
Author(s):  
Thitinai Gaewdang ◽  
Ngamnit Wongcharoen

In this paper, p-CuO/n-CdS heterojunction was prepared by thermal evaporating CdS thin films on CuO 1 mm thick ceramic pellet substrate. The electrical properties of p-CuO/n-CdS heterojunction were investigated by forward current–voltage–temperature (I–V–T) characteristics in the temperature range of 100-300 K. The junction barrier height, ideality factor, and the series resistance values of the diode evaluated by using thermionic emission (TE) theory and Cheung’s method are 0.566 eV, 5.535 and 618.24 Ω at 300 K, respectively. The junction barrier height, ideality factor and series resistance were found to be strong temperature dependence. In part of C-V measurements at room temperature, the obtained built-in potential value being 0.538 V is well consistent with the junction barrier height value evaluated from I-V measurements

2013 ◽  
Vol 313-314 ◽  
pp. 270-274
Author(s):  
M. Faisal ◽  
M. Asghar ◽  
Khalid Mahmood ◽  
Magnus Willander ◽  
O. Nur ◽  
...  

Temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements were utilized to understand the transport mechanism of Pd Schottky diodes fabricated on Zn- and O-faces of ZnO. From I-V measurements, in accordance with the thermionic emission mechanism theory, it was found that the series resistance Rsand the ideality factor n were strongly temperature dependent that decreased with increasing temperature for both the faces (Zn and O-face) of ZnO revealing that the thermionic emission is not the dominant process. The barrier height øB(I-V)increased with increasing temperature for both faces. The measured values of ideality factor, barrier height and series resistance for Zn- and O-faces at room temperature were 4.4, 0.60 eV, 217 Ω and 2.8, 0.49 eV, 251 Ω respectively. The capacitance-voltage (C–V) measurements were used to determine the doping concentration Nd, the built-in-potential Vbi, and the barrier height øB(C-V). The doping concentration was found to be decreased with increasing depth. The barrier height øB(C-V)calculated for O-polar and Zn-polar faces decreases with increasing temperature. The values of barrier height øB(C-V)determined from C-V measurements were found higher than the values of barrier height øB(I-V). Keeping in view the calculated values of ideality factor, barrier height, and series resistance shows that O-polar face is qualitatively better than Zn-polar face.


2013 ◽  
Vol 446-447 ◽  
pp. 88-92
Author(s):  
Nathaporn Promros ◽  
Suguru Funasaki ◽  
Ryūhei Iwasaki ◽  
Tsuyoshi Yoshitake

n-Type nanocrystalline FeSi2/intrinsic Si/p-type Si heterojunctions were prepared by FTDCS. In order to estimate their diode parameters such as ideality factor, barrier height and series resistance, their current-voltage characteristics were measured in the temperature range from 300 to 77 K and analyzed on the basis of thermionic emission theory and Cheungs method. Based on thermionic emission theory, the ideality factor was calculated from the slope of the linear part from the forward lnJ-V characteristics. The barrier height was calculated once the saturation current density was derived from the straight line intercept of lnJ-V plot at a zero voltage. The obtained results exhibit an increase of ideality factor and a decrease of barrier height at low temperatures, which might be owing to inhomogeneity of material and non-uniformity of charge at the interface. Based on Cheungs method, the ideality factor and barrier height were estimated from y-axis intercept of dV/d (lnJ)J plot and y-axis intercept of H(J)J plot, respectively. The series resistance was analyzed from the slopes of dV/d (lnJ)J and H(J)J plots. The values of ideality factor and barrier height obtained from this method are in agreement with those obtained from the thermionic emission theory. The obtained series resistances from dV/d (lnJ)J and H(J)J plots, which were approximately equal to each others, were increased as the temperature decreased. This result should be owing to the increased ideality factor and remarkably reduced carrier concentrations at low temperatures.


2015 ◽  
Vol 1103 ◽  
pp. 91-96
Author(s):  
Nathaporn Promros ◽  
Suguru Funasaki ◽  
Motoki Takahara ◽  
Ryūhei Iwasaki ◽  
Mahmoud Shaban ◽  
...  

Mesa structural n-type nanocrystalline-FeSi2/p-type Si heterojunctions were successfully fabricated by a lift-off technique combined with a photolithography process. Their current-voltage characteristics were measured at low temperatures range from 300 K down to 60 K. We estimated their diode parameters such as ideality factor, barrier height and series resistance based on the thermionic emission theory and Cheung’s method. From the estimation by the thermionic emission theory, the obtained results show an increase of ideality factor and a decrease of barrier height at low temperatures. The estimation by Cheung’s method shows that the values of ideality factor and barrier height are in agreement with those obtained from the thermionic emission theory. The obtained series resistances from dV/d (lnJ)-J and H(J)-J plots, which are approximately equal to each others, are increased at low temperatures.


2013 ◽  
Vol 858 ◽  
pp. 171-176
Author(s):  
Nathaporn Promros ◽  
Ryūhei Iwasaki ◽  
Suguru Funasaki ◽  
Kyohei Yamashita ◽  
Chen Li ◽  
...  

n-Type NC-FeSi2/p-type Si heterojunctions were successfully fabricated by PLD, and their forward current-voltage characteristics were analyzed on the basis of thermionic emission theory (TE) in the temperature range from 300 down to 77 K. With a decrease in the temperature, the ideality factor was increased while the zero-bias barrier height was decreased. The calculated values of ideality factor and barrier height were 3.07 and 0.63 eV at 300 K and 10.75 and 0.23 eV at 77 K. The large value of ideality factor indicated that a tunneling process contributes to the carrier transport mechanisms in the NC-FeSi2 films. The series resistance, which was estimated by Cheungs method, was strongly dependent on temperature. At 300 K, the value of series resistance was 12.44 Ω and it was dramatically enhanced to be 1.71× 105 Ω at 77 K.


Author(s):  
Sabuhi Ganiyev ◽  
M. Azim Khairi ◽  
D. Ahmad Fauzi ◽  
Yusof Abdullah ◽  
N.F. Hasbullah

In this paper the effects of high energy (3.0 MeV) electrons irradiation over a dose ranges from 6 to 15 MGy at elevated temperatures 298 to 448 K on the current-voltage characteristics of 4H-SiC Schottky diodes were investigated. The experiment results show that after irradiation with 3.0 MeV forward bias current of the tested diodes decreased, while reverse bias current increased. The degradation of ideality factor, n, saturation current, Is, and barrier height, Phib, were not noticeable after the irradiation. However, the series resistance, Rs, has increased significantly with increasing radiation dose. In addition, temperature dependence current-voltage measurements, were conducted for temperature in the range of 298 to 448 K. The Schottky barrier height, saturation current, and series resistance, are found to be temperature dependent, while ideality factor remained constant. DOI: 10.21883/FTP.2017.12.45193.8646


2020 ◽  
Vol 34 (10) ◽  
pp. 2050095
Author(s):  
Durmuş Ali Aldemir

Zr/p-Si Schottky diode was fabricated by DC magnetic sputtering of Zr on p-Si. Zr rectifying contact gave a zero bias barrier height of 0.73 eV and an ideality factor of 1.33 by current–voltage measurement. The experimental zero bias barrier height was higher than the value predicted by metal-induced gap states (MIGSs) and electronegativity theory. The forward bias current was limited by high series resistance. The series resistance value of 9840 [Formula: see text] was determined from Cheung functions. High value of the series resistance was ascribed to low quality ohmic contact. In addition to Cheung functions, important contact parameters such as barrier height and series resistance were calculated by using modified Norde method. Re-evaluation of modified Norde functions was realized in the direction of the method proposed by Lien et al. [IEEE Trans. Electron Devices 31 (1984) 1502]. From the method, the series resistance and ideality factor values were found to be as 41.49 [Formula: see text] and 2.08, respectively. The capacitance–voltage characteristics of the diode were measured as a function of frequency. For a wide range of applied frequency, the contact parameters calculated from [Formula: see text]–[Formula: see text] curves did not exhibit frequency dependence. The barrier height value of 0.71 eV which was in close agreement with the value of zero bias barrier height was calculated from [Formula: see text]–[Formula: see text] plot at 1 MHz. The values of acceptor concentration obtained from [Formula: see text]–[Formula: see text] curves showed consistency with actual acceptor concentration of p-Si.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Ahmet Faruk Ozdemir ◽  
Adnan Calik ◽  
Guven Cankaya ◽  
Osman Sahin ◽  
Nazim Ucar

Au/n-GaAs Schottky barrier diodes (SBDs) have been fabricated. The effect of indentation on Schottky diode parameters such as Schottky barrier height (φb) and ideality factor (n) was studied by current-voltage (I-V) measurements. The method used for indentation was the Vickers microhardness test at room temperature. The experimental results showed that the I-V characteristics move to lower currents due to an increase of φb with increasing indentation weight, while contacts showed a nonideal diode behaviour.


2011 ◽  
Vol 1406 ◽  
Author(s):  
Cleber A. Amorim ◽  
Olivia M. Berengue ◽  
Luana Araújo ◽  
Edson R. Leite ◽  
Adenilson J. Chiquito

ABSTRACTIn this work, we studied metal/SnO2 junctions using transport properties. Parameters such as barrier height, ideality factor and series resistance were estimated at different temperatures. Schottky barrier height showed a small deviation of the theoretical value mainly because the barrier was considered fixed as described by ideal thermionic emission-diffusion model. These deviations have been explained by assuming the presence of barrier height inhomogeneities. Such assumption can also explain the high ideality factor as well as the Schottky barrier height and ideality factor dependence on temperature.


2015 ◽  
Vol 1120-1121 ◽  
pp. 435-439
Author(s):  
Nathaporn Promros ◽  
Dalin Prajakkan ◽  
Nantharat Hongsa ◽  
Nattanee Suthayanan ◽  
Phongsaphak Sittimart ◽  
...  

In this work, n-type β-FeSi2/intrinsic Si/p-type Si heterojunctions were prepared by facing-targets direct-current sputtering. We measured their current-voltage characteristics at low temperatures ranging from 300 K down to 50 K and investigated their ideality factor, saturation current and series resistance using thermionic emission theory and Cheung’s method. From thermionic emission theory, the ideality factor and saturation current density were calculated from the slope of the linear part from the forward lnJ-V and the straight line intercept of lnJ-V at zero voltage, respectively. When the temperature decreased from 300 K down to 50 K, the ideality factor increased from 1.12 to 11.13, whereas the saturation current density decreased from 2.09 × 10-6 A/cm2 to 1.06 × 10-9 A/cm2. Using Cheung’s method, we plotted the relations of dV/d(lnJ)-J and H(J)-J in order to estimate the series resistance from the slope of both plots. In addition, we estimated the ideality factor from a y-axis intercept of the dV/d(lnJ)-J plot. The series resistances from both plots were consistent with each other and increased with the decreasing temperature. The ideality factor estimated by Cheung’s method was in agreement with that obtained from estimation by thermionic emission theory.


Sign in / Sign up

Export Citation Format

Share Document