Nanoparticles of Metastable Copper Nitride Grown by Ar Ion Beam Irradiation

2006 ◽  
Vol 11-12 ◽  
pp. 567-570 ◽  
Author(s):  
Ki Wan Jang ◽  
Shun Ichiro Tanaka

Nanoparticles of metastable copper nitride(Cu3N) have been successfully fabricated from Cu mask using Ar ion ‘transcription method’ which is firstly invented by B.-S. Xu, C. Iwamoto and S.-I. Tanaka in 1996 [1]. The structural and morphological changes with irradiation time are studied by transmission electron microscopy (TEM). The thin film-like crystalline Cu3N which is covered with amorphous or polycrystalline cuprite (Cu2O) layer in the as-received Cu mask plays a role of target. Polycrystalline Cu3N nanoparticles nucleate and grow up to the average size of 15nm after 30 sec-irradiation. Coalesence of 50nm-sized grown Cu3N nanoparticles forms polycrystalline thin film after 2min-irradiation and its growth behavior follows Volmer-Weber mode. As irradiation time increases from 30 sec to 15 min, Cu3N nanoparticles are thought to be grown preferentially along the [111] and [100] directions. Cu2O still remain with Cu3N after 15 min.-irradiation.

1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2013 ◽  
Vol 283 ◽  
pp. 417-421 ◽  
Author(s):  
Tanuj Kumar ◽  
Ashish Kumar ◽  
N.P. Lalla ◽  
Sonu Hooda ◽  
Sunil Ojha ◽  
...  

2007 ◽  
Vol 124-126 ◽  
pp. 1229-1232 ◽  
Author(s):  
Myoung Seok Sung ◽  
Yoon Bok Lee ◽  
Yong Jin Kim ◽  
Yang Do Kim

Cadmium selenide(CdSe) nanoparticles were prepared in the aqueous solution containing isopropyl alcohol by the ultrasonic irradiation at room temperature. The cadmium chloride (CdCl2) and sodium selenosulfate (Na2SeSO3) were used as the cadmium and selenium source, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis absorption spectra and PL spectra were used to characterize the CdSe nanoparticles. XRD analysis revealed the formation of cubic structure CdSe. TEM images showed aggregated CdSe nanoparticles with the size of nanometer scale. Average size of CdSe nanoparticles were about 3.9, 5.0 and 5.1nm with sonication time of 6, 30 and 40 minutes, respectively. The surface emission became less intensive and shifted to red with increasing irradiation time. This paper presents the effects of ultrasonic on the formation of CdSe nanoparticles and its characteristics.


1987 ◽  
Vol 2 (4) ◽  
pp. 446-455 ◽  
Author(s):  
Sung I. Park ◽  
A. Marshall ◽  
R. H. Hammond ◽  
T. H. Geballe ◽  
J. Talvacchio

Low-energy ion-beam cleaning of the substrates prior to a deposition greatly enhances the quality of ultrathin (< 100 Å) refractory superconducting (Nb, V) films. Using this technique Nb films as thin as 7 Å have been grown, from which good tunnel junctions have been fabricated. Both the native films and the tunnel junctions are sturdy and can be thermally recycled without any degradation. In-situ surface study along with transmission electron microscopy (TEM) results suggest the removal of the carbon atoms from the surface of the substrate without an apparent surface damage as the causes of the improvement. The TEM results indicate that the Nb films grow perfectly lattice matched to the sapphire substrate when the substrate is ion-beam cleaned. This strained-layer epitaxy is observed up to 40 Å, the maximum thickness investigated through TEM.


2001 ◽  
Vol 674 ◽  
Author(s):  
Jason D. Wright ◽  
Kannan M. Krishnan

ABSTRACTThe modification of conventional longitudinal recording media by ion-beam irradiation is of both scientific and technological interest. In particular, patterning by irradiation through a stencil mask at the 50 nm length scale may fulfill the promise of a commercially viable patterned media architecture. In this context, the magnetic properties and microstructural evolution of high-coercivity longitudinal thin film media were investigated after ion-beam irradiation. TRIM simulations were used to calculate the depth profiles and damage distributions as a function of energy and dose for carbon, nitrogen, and chromium ions and three different media (C, Cr, no capping layer). Corresponding implantations were carried out and hysteresis curves were measured using a vibrating sample magnetometer (VSM). Using chromium ion implantation at 20 keV, both remanence and coercivity were reduced to zero, i.e., rendering the ferromagnetic thin film paramagnetic, at doses as low as 1×1016 cm−2. For C+ implantation at 20 keV, remanence and coercivity were also reduced to varying extent up to doses of 5×1016 cm−2 after which further irradiation had no effect. Slight decreases in remanence and coercivity were observed for 20 keV N2+ irradiation. XRD measurements indicate that the hexagonal cobalt alloy phase remains intact after irradiation. The physical and magnetic domain structures at the surface were assessed by atomic force and magnetic force microscopy. Combined with the development of a suitable stencil mask, such chromium ion implantation can be used to develop a viable patterned media with nanoscale dimensions, consisting of locally defined ferromagnetic and paramagnetic regions. This work is in progress.


2002 ◽  
Vol 739 ◽  
Author(s):  
Takuya Kamikawa ◽  
Ryuichi Tarumi ◽  
Kazuki Takashima ◽  
Yakichi Higo

ABSTRACTWe have succeeded to form three-dimensionally orientated nano-sized crystals in a Ni-P amorphous alloy under focused ion beam (FIB) irradiation. The FIB micro-fabrication was performed on an electroless deposited Ni-P amorphous alloy and thin films with a thickness of 100 nm were prepared. Transmission electron microscopy (TEM) observation for irradiated areas revealed the formation of crystallographically orientated nano-sized crystals (NCs) in the irradiated region. The grain size of NCs was less than 10 nm in diameter. Electron diffraction analysis showed that the formed NCs have a face-centered-cubic (f.c.c.) structure and the following orientation relationships among the specimen, the NCs and the FIB direction: irradiated plane // {111}f.c.c. and ion beam direction // <110>f.c.c..


1999 ◽  
Vol 557 ◽  
Author(s):  
C-M Park ◽  
M-C Lee ◽  
J-H Jeon ◽  
M-K Han

AbstractExcimer laser annealing technique is proposed to increase the grain size and controlling the microstructure of polycrystalline silicon (poly-Si) thin film. Our method is based on the lateral grain growth during laser annealing. Our specific grid ion beam irradiation method was designed to maximize the lateral growth effect and arrange the location of grain boundaries. We observed well-arranged poly-Si grains up to micrometer order by transmission electron microscopy (TEM).


Sign in / Sign up

Export Citation Format

Share Document