Cementitious Materials Usage in Self-Compacting Concrete: A Review

2015 ◽  
Vol 1113 ◽  
pp. 153-160 ◽  
Author(s):  
Ahmad Farhan Hamzah ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Ramadhansyah Putra Jaya ◽  
Norul Ernida Zainal Abidin

There are significant changes observed in concrete materials, the properties of innovated concrete have also experiencing revolutionize through hi-tech encroachment. Instead of new changes in the materials used in concrete making, the adjustment in concrete is started from conventional concrete strength and slowly tracked by high-strength concrete and high-performance concrete. Recently, the exploitation of by-products waste in the self-compacting concrete (SCC) had achieved massive interest among researchers due to practicable and beneficial features. Most of the prior works focused on SCC combining with supplementary cementitious materials such as fly ash, coal bottom ash, silica fume, ground granulated glass blast-furnace slag and rice husk ash. Concrete with these cementitious materials have been used extensively throughout the world. These materials used as mineral admixtures in concrete and strengthen the durability and concrete properties. The concrete applications are increasing with the passage of time due to their superior structural performance, environmental friendliness and low impact on energy utilization. Through these understanding, this research points out the idea of cementitious materials in concrete, especially SCC possess with numerous positive features such as durability, flowability and overall performance of concrete. It can be seen that cementitious materials have high benefit and lead to curing potential. However, it is important to understand that these materials are relatively expensive. Thus, this is a main reason behind their less adoption compared to add as mixtures in Portland cement.

DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 84-93 ◽  
Author(s):  
Nancy Torres Castellanos ◽  
Jaime Antonio Fernández Gómez ◽  
Andres Mauricio Nuñez Lopez

Ultra-high-performance concrete (UHPC) is the essential innovation in concrete research of the recent decades. However, because of the high contents of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. The use of industrial byproducts as supplementary cementitious materials, in the case of recycled glass powder and fluid catalytic cracking catalyst residue (FCC), the partial substitution of cement and silica fume allows to create a more ecological and cost-efficient UHPC. This research presents a study to determine the possibility of partial substitution of cement by FCC in a previously optimized mixture of ultra-high-performance concrete with recycled glass. The results demonstrate that compressive strength values of 150 and 151 MPa without any heat treatment can be achieved, respectively, when replacing 11% and 15% of the cement with FCC, for a determined amount of water and superplasticizer, compared to 158 MPa obtained for the reference UHPC without any FCC content. The rheology of fresh UHPC is highly decreased by replacing cement particles with FCC.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Marlene Sakoparnig ◽  
Isabel Galan ◽  
Florian R. Steindl ◽  
Wolfgang Kusterle ◽  
Joachim Juhart ◽  
...  

AbstractThe reduction of clinker use is mandatory to lower the negative environmental impact of concrete. In shotcrete mixes, similarly to the case of conventional concrete, the use of supplementary cementitious materials (SCMs) and proper mix design allow for the substitution of clinker without compromising the mechanical properties. However, the impact of the substitution on the durability of shotcrete needs to be further assessed and understood. The results from the present study, obtained from real-scale sprayed concrete applications, show a reduction of the Ca2+ leaching and sintering potential of clinker-reduced shotcrete mixes due to the presence of SCMs. This positive effect, crucial for low maintenance costs of tunnels, is mainly related to a reduced portlandite content, which on the other hand negatively affects the carbonation resistance of shotcrete. Additionally, the hydration of SCMs positively influences the chloride penetration resistance presumably due to a combination of microstructural changes and changes in the chloride binding capacity. Differences found in the pore size distribution of the various mixes have low impact on the determined durability parameters, in particular compared to the effect of inhomogeneities produced during shotcrete application.


2013 ◽  
Vol 634-638 ◽  
pp. 2738-2741
Author(s):  
Wei Huang ◽  
Tao Zhang ◽  
Yun Yun Xu

Concrete autogenous shrinkage phenomenon would adversely affect the mechanical properties and durability of concrete, this phenomenon is important. Autogenous shrinkage problem of low water-cement ratio of the with high mineral admixtures, cement-based cementitious materials was introduced. The main reason for high-performance concrete early cracking being autogenous shrinkage was pointed out. Based on the home and abroad research status of low water cement ratio of the cement paste and concrete autogenous shrinkage, especially for early autogenous shrinkage phenomenon, the mechanism of autogenous shrinkage and the measure method is presented, and the improvement measures and the possible problems the need for further research work is presented.


2019 ◽  
Vol 292 ◽  
pp. 102-107 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Karel Šeps ◽  
Roman Chylík ◽  
Vladimír Hrbek

High-performance concrete is a very specific type of concrete. Its production is sensitive to both the quality of compounds used and the order of addition of particular compounds during the homogenization process. The mechanical properties were observed for four dosing procedures of each of the three tested concrete mixtures. The four dosing procedures were identical for the three mixes. The three mixes varied only in the type of supplementary cementitious material used and in water content. The water content difference was caused by variable k-value of particular additives. The water-to-binder ratio was kept constant for all the concretes. The additives used were metakaolin, fly ash and microsilica. The comparison of particular dosing procedures was carried out on the values of basic mechanical properties of concrete. The paper compares compressive strength and depth of penetration of water under pressure. Besides the comparsion of macro-mechanical properties, the effect of microsilica and fly ash additives on micro-mechanical properties was observed with the use of scanning electron microscopy (SEM) and nanoindentation data analysis. Nanoindentation was used to determine the thickness and strength of interfacial transition zone (ITZ) for different sequence of addition of cement, additive and aggregate. The thickness obtained by nanoindentation was further investigated by SEM EDS line scanning.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


Sign in / Sign up

Export Citation Format

Share Document