Mesoporous Sulfur-Doped TiO2 Microspheres for Catalytic Degradation of Methylene Blue under Visible Light

2015 ◽  
Vol 1118 ◽  
pp. 242-250 ◽  
Author(s):  
Zhen Wu Ding ◽  
Si Chen ◽  
Zhong Qing Liu ◽  
Cheng Fa Jiang ◽  
Wei Chu

Mesoporous S-doped TiO2 microspheres were synthesized via hydrothermal method using Ti (SO4)2 precursor and urea as homogeneous precipitate agent. The TiO2-based catalyst samples were characterized by means of Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption and UV-vis diffuse reflectance spectra (UV-vis DRS). Photo-catalytic experiments were carried out by catalytic degradation of methylene blue aqueous solution under visible light. It was found that the S-doped TiO2 microspheres gave better photo-catalytic performances. The higher absorbance in the visible region explained this phenomenon. There was an appropriate Ti (SO4)2 amount for the catalyst with better photo-catalytic degradation.

2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


2012 ◽  
Vol 557-559 ◽  
pp. 1592-1595 ◽  
Author(s):  
Xiao Lin Liu ◽  
Wen Lu Guo ◽  
Jing Jing Ma

B-doped TiO2 nanoparticles have been successfully prepared using hydrothermal synthesis with tetrabuttyl titanate and boric acid as precursor. The prepared samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), scanning electron microscope (SEM). The B-doped TiO2 nanoparticles were red-shifted than P25. And the degradation rate of B-TiO2 is 72.62% in 120 min by degradation of salicylic acid under visible light irradiation.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7741
Author(s):  
Hong-Tham Nguyen Thi ◽  
Kim-Ngan Tran Thi ◽  
Ngoc Bich Hoang ◽  
Bich Thuy Tran ◽  
Trung Sy Do ◽  
...  

Samples of the bimetallic-based NH2-MIL-125(Ti) at a ratio of Mn+/Ti4+ is 0.15 (Mn+: Ni2+, Co2+ and Fe3+) were first synthesized using the solvothermal method. Their fundamental properties were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectra, scanning electron microscopy (SEM), N2 adsorption–desorption measurements, and UV–Vis diffuse reflectance spectroscopy (UV-Vis DRS). The as-acquired materials were used as high-efficiency heterogeneous photocatalysts to remove Rhodamine B (RhB) dye under visible light. The results verified that 82.4% of the RhB (3 × 10−5 M) was degraded within 120 min by 15% Fe/Ti−MOFs. Furthermore, in the purpose of degrading Rhodamine B (RhB), the rate constant for the 15% Fe/Ti-MOFs was found to be 2.6 times as fast as that of NH2-MIL-125(Ti). Moreover, the 15% Fe/Ti-MOFs photocatalysts remained stable after three consecutive cycles. The trapping test demonstrated that the major active species in the degradation of the RhB process were hydroxyl radicals (HO∙) and holes (h+).


2020 ◽  
Vol 9 (1) ◽  
pp. 88-94
Author(s):  
Tuan Nguyen Dinh Minh ◽  
Nga Phan Thi Hang

In this study, the catalytic performances of the complete oxidation of toluene over different transition metal oxides including MnO2, Co3O4 and NiO were investigated. These oxides were synthesized by hydrothermal method, followed by annealing. The catalysts were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen isotherm adsorption-desorption before being evaluated their catalytic activity for the total oxidation of toluene in air. As a result, MnO2 was illustrated as the best catalyst having largest surface area and lowest activation energy, followed by Co3O4 and NiO.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Pengyu Dong ◽  
Yan Hao ◽  
Peiyang Gao ◽  
Entian Cui ◽  
Qinfang Zhang

Ag3PO4triangular prism was synthesized by a facile chemical precipitation approach by simply adjusting external ultrasonic condition. The as-synthesized Ag3PO4triangular prism was characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectra, and ultraviolet-visible diffuse reflectance (UV-vis DRS) absorption spectra. The photocatalytic activity of Ag3PO4triangular prism was evaluated by photodegradation of organic methylene blue (MB), rhodamine B (RhB), and phenol under visible light irradiation. Results showed that Ag3PO4triangular prism exhibited higher photocatalytic activity than N-doped TiO2and commercial TiO2(P25) under visible light irradiation.


2014 ◽  
Vol 925 ◽  
pp. 273-277
Author(s):  
Raihan Mahirah Ramli ◽  
Chong Fai Kait ◽  
Abdul Aziz Omar

Cu doped TiO2 at different metal loading was successfully prepared and investigated. Characterization of the prepared photocatalysts was carried out using X-ray diffraction (XRD), diffuse reflectance UVVis spectroscopy (DRUVVis) and scanning electron microscopy (SEM). Photodegradation study of aqueous diisopropanolamine solution (1000 ppm) using the prepared photocatalyst showed significant COD removal under visible light irradiation. The photocatalyst with 1.5 wt% Cu gave the highest COD removal of 45 %.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


2011 ◽  
Vol 364 ◽  
pp. 238-242 ◽  
Author(s):  
Kimi Melody ◽  
Yuliati Leny ◽  
Mustaffa Shamsuddin

A series of In0.1SnxZn0.85-2xS solid solutions was synthesized by hydrothermal method and employed as photocatalyst for photocatalytic hydrogen evolution under visible light irradiation. The structures, optical properties and morphologies of the solid solutions were studied by X-ray diffraction, diffuse reflectance UV–visible spectroscopy and field emission scanning electron microscopy. From the characterizations, it was confirmed that In0.1SnxZn0.85-2xS solid solution can be obtained and they have nanosized particles. The highest photocatalytic activity was observed on In0.1Sn0.03Zn0.79S photocatalyst, with average rate of hydrogen production 3.05 mmol/h, which was 1.2 times higher than the In0.1Zn0.85S photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document