Performance of Ultra-High Strength Concrete Containing Different Types of Fibers

2015 ◽  
Vol 1120-1121 ◽  
pp. 1491-1495
Author(s):  
Wei Qin Li ◽  
Yuan Peng ◽  
Xue Yun He ◽  
Xiong Wu ◽  
Liang Huo

Influence of fiber on workability and mechanical property of ultra-high strength concrete (UHSC) were studied. Results show that, when amount of steel fiber (Equivalent diameter is 0.2mm; nominal length is 13mm; Tensile strength is 2850MPa )substituting fine aggregate is 120kg/m3, UHSC could have the best mechanical properties of 139.0MPa compressive strength, 18.0MPa flexural strength, and 10.0MPa Splitting strength; steel fiber cannot improve volume stability of UHSC.

2018 ◽  
Vol 199 ◽  
pp. 11005 ◽  
Author(s):  
Wasim Abbass ◽  
M. Iqbal Khan

The high strength concrete exhibits improved compressive strength with drawback of brittle failure due to lack of tensile strength which can be catered by the addition of fibers. The efficient use of fibers with hybridization at macro and micro level can improve mechanical properties of high strength concrete. The effect of hybridization of hooked end steel macro fibers (60 mm) and PVA micro fibers (12 mm) with different dosages was investigated in this research work. The different percentage of steel and PVA were hybridized to find out the best combination of hybridized fibers in high strength concrete. The compressive and flexural properties of high strength concrete along with complete load vs deflection behaviour of hybrid fiber reinforced concrete were investigated. The results revealed that hybridization of macro and micro fibers provided better improvement in flexural performance. It was observed from the results that the hybrid combination of fibers of 1% macro steel fiber and 0.15% micro PVA fibers proved to be the best for enhancement in flexural performance of high strength concrete.


2018 ◽  
Vol 30 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Gwon Young Jeong ◽  
Seok Joon Jang ◽  
Yong Cheol Kim ◽  
Hyun Do Yun

Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 93 ◽  
Author(s):  
Yun ◽  
Lim ◽  
Choi

: This paper investigates the effects of the tensile strength of steel fiber on the mechanical properties of steel fiber-reinforced high-strength concrete. Two levels of steel fiber tensile strength (1100 MPa and 1600 MPa) and two steel fiber contents (0.38% and 0.75%) were used to test the compression, flexure, and direct shear performance of steel fiber-reinforced high-strength concrete specimens. The aspect ratio for the steel fiber was fixed at 80 and the design compressive strength of neat concrete was set at 70 MPa to match that of high-strength concrete. The performance of the steel fiber-reinforced concrete that contained high-strength steel fiber was superior to that which contained normal-strength steel fiber. In terms of flexural performance in particular, the tensile strength of steel fiber can better indicate performance than the steel fiber mixing ratio. In addition, a compression prediction model is proposed to evaluate compression toughness, and the model results are compared. The predictive model can anticipate the behavior after the maximum load.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Bong-Seop Lee ◽  
Chang-Hoon Bang

Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results.


2013 ◽  
Vol 539 ◽  
pp. 178-183 ◽  
Author(s):  
Zheng Wu Jiang ◽  
Zi Long Deng ◽  
Nan Zhang

In this paper, pore structures and their changes of ordinary-strength concrete and high-strength concrete at different curing ages of 3, 28, 90 days were studied using thermoporometry, and the results were compared with those from MIP and NAD. The relationship between micro pores and porosity of concrete and its macroscopic properties was also studied. The results indicate that, compared to MIP, thermoporometry can characterize the features of pores with the diameter smaller than 100 nm in concrete accurately. The differences of macroscopic mechanical properties of concretes can be explained using the changes of their pore size distribution. After curing age of 28 days, the amount of pores with the diameter higher than 20 nm in high strength concrete changes little, but it decreases gradually in ordinary strength concrete. And pores with diameter smaller than 20 nm in concrete have little influence on the macroscopic mechanical property of concrete.


2020 ◽  
Vol 32 (1) ◽  
pp. 19-26
Author(s):  
Gyeong-Cheol Choe ◽  
Gyu-Yong Kim ◽  
Hong-Seop Kim ◽  
Eui-Chul Hwang ◽  
Jeong-Soo Nam

2008 ◽  
Vol 385-387 ◽  
pp. 789-792 ◽  
Author(s):  
Su Tae Kang ◽  
Jung Jun Park ◽  
Gum Sung Ryu ◽  
Sung Wook Kim

The fibers alignment in steel fiber reinforced high strength concrete (SFR-HSC) has naturally significant influence on the mechanical properties of concrete. Fiber-reinforced concrete being manufactured by means various kinds of specimen shape and diversified filling methods and directions, these variables are likely to produce effect on the fibers alignment leading to large differences in its mechanical properties. This study intended to evaluate the effect of placing and flow direction not only on the fibers alignment but also on the tensile behavior of SFR-HSC. Section analysis using photographic shooting was adopted to investigate the fiber alignment and revealed considerable difference in the fiber alignment according to the placing and flow direction. The best alignment appears to be achieved when placing is done in the direction of the flexural tensile stress and the alignment was change with the flow distance although the same flow direction. Such placing and flow direction produce little difference in the first cracking strength but significant discrepancy up to 50% in the ultimate tensile strength.


Sign in / Sign up

Export Citation Format

Share Document