Research on GTAW/SMAW Weldability of ADI/DI Using Electrodes ENi-Cl and ENiFe-Cl-A

2015 ◽  
Vol 1128 ◽  
pp. 242-253
Author(s):  
Ioan Catalin Mon ◽  
Mircea Horia Tierean ◽  
Adel Nofal

The present research is dedicated to weldability of Austempered Ductile Iron (ADI) and Ductile Iron (DI) using Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) methods. The welds were done using the arc welding process with Nickel base filler materials: ENi-Cl and ENiFe-Cl-A. Each weldment was examined visually, with X-rays and mechanical tests. After the mechanical tests, tensile test and impact properties of the welded joint are lower than mechanical properties of the ADI base material using ENiFe-Cl-A filler metal and GTAW process. This type of filler metal ENiFe-Cl-A can be applied successfully only for repair by welding of ADI parts. Using ENi-Cl filler metal with GTAW process applied to DI, the mechanical tests, tensile test and hardness of the welded joint are greater than mechanical properties of the DI base material. This procedure can be applied for welding. In case on DI welded using SMAW with ENi-Cl electrodes, the hardness of the welded joint is lower than the hardness of base material. This procedure can be applied only for repair by welding.

2020 ◽  
Vol 38 (8A) ◽  
pp. 1236-1245
Author(s):  
Muna K. Abbass ◽  
Jihad G. Abd Ul-Qader

This study presents an appropriate filler metal or welding electrode to join aluminum alloy (AA2024-T3) sheet of 3.2 mm thickness with a square butt joint using Gas Tungsten Arc Welding (GTAW) process. This process was carried out at three different welding currents with three various filler metals: ER4047 (12% Si), ER4043 (5% Si), and ER5356 (5% Mg). Experiments were conducted to investigate the microstructure and the mechanical properties. The effect of various filler metals upon the weld joints quality were analyzed via an X-ray radiographic and tensile test. Hardness test, microstructures, SEM, and XRD also conducted to the welded specimens. It was found that the best result was at 100 Ampere with using filler metal (ER5356) which produced the highest strength of 240 MPa in comparison with welded joints with utilizing fillers (ER4043) and (ER4047) having values of 235 MPa and 225 MPa, correspondingly. The hardness results showed that the highest hardness values were at the weld metal for ER4047 and ER4043, then decreased to HAZ and increased in the base metal. While in the case of ER5356, the highest hardness was in HAZ and decreased in the weld metal. The fractography of the fracture surface of the welded joints after the tensile test was analyzed using SEM.


Author(s):  
Chaowen Li ◽  
Shuangjian Chen ◽  
Kun Yu ◽  
Zhijun Li

GH3535 supperalloy, whose grade of ASME is UNS N10003, is currently considered as a candidate material for solid-fuel and fluid-fuel molten salt reactor in china. During the development of procedures for welding GH3535 superalloy, consideration should always be given to the possibility that repair welding may be necessary. This paper presents weld repairs of GH3535 alloy rolled plates using gas tungsten arc welding with filler metal. The purpose of this work is to evaluate the low heat input process for weld repair of GH3535 alloy plates about the microstructure features and mechanical properties. The results demonstrated that sound joints without defects could be obtained after weld repairs. Due to repair thermal cycles on the original weld seam, the size of carbide precipitate became large, but repair welding is found to cause no decrease in short-term time-independent strength.


2018 ◽  
Vol 62 (6) ◽  
pp. 1137-1151 ◽  
Author(s):  
Yifei Li ◽  
Kejian Li ◽  
Zhipeng Cai ◽  
Jiluan Pan ◽  
Xia Liu ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Guanglong Cao ◽  
Mingfa Ren ◽  
Yahui Zhang ◽  
Weibin Peng ◽  
Tong Li

The partition of aluminum alloy welded joint often depends on microscopic methods such as scanning electron microscopy before. This paper provides a novel partitioning method, which can obtain the material properties and partition results at the same time based on tensile test. The mechanical properties of every point on the whole welded joint are first obtained by the digital image correlation (DIC) method. Then, the mechanical property function of the weld joint along the weld center is established due to the changes of plastic property and strain hardening exponent at each point and the boundary between different areas is then determined. Metallographic detection technology and nano-mechanical testing techniques are employed to validate this partitioning scheme. The partition result of the strategy proposed in this paper is consistent with the partitioning result of the classical method. Compared to classical method, the proposed partitioning method is more practical and effective, as it can obtain mechanical properties and partition boundary through a single tensile test and reduce the cost of metallographic test.


2013 ◽  
Vol 379 ◽  
pp. 195-198 ◽  
Author(s):  
A.G. Krampit ◽  
N.Yu Krampit ◽  
M.A. Krampit

Research results of the weld chemical composition and mechanical properties at pulsed arc welding are discussed. It is established that the pulsed power supply favours mechanical properties of the welded joint.


2019 ◽  
Vol 29 ◽  
pp. 1-12
Author(s):  
Juan Manuel Salgado López ◽  
Marc Preud homme ◽  
Francisco Lopez Monroy ◽  
Jose Luis Ojeda Elizarráraz ◽  
Arturo Toscano Giles

In literature, it has been reported that a current intensity lower than 120 A leads to a microstructure without grain growth in the heat affected zone (HAZ) of ferritic stainless steel welds. Nevertheless, in technical literature there is little information about the reduction in mechanical properties of ferritic stainless steel welds without filler metal due to grain growth in the HAZ. In this work, thin plates of ferritic stainless 439 steel were welded using pulse current gas tungsten arc welding (P-GTAW) without filler metal. The microstructures in the HAZ were analyzed and the mechanical properties on the welded joint were found by tensile test. This was carried out by cutting samples for the tensile test from the weldments and then tested in a universal testing machine. The fracture surface were observed using scanning electron microscope.


Author(s):  
German Cota-Sanchez ◽  
Lin Xiao

Abstract Inconel 625 is considered one of the candidate materials for reactor fuel cladding in the Canadian supercritical water reactor (SCWR) design. Gas tungsten arc welding (GTAW) is being evaluated as a joining technique for SCWR fuel cladding since this method is widely used to join components in the power and nuclear industry. During the GTAW process, the welding thermal cycle produces different types of microstructures in both the heat-affected zone (HAZ) and fusion zone (FZ) that affect the material's mechanical properties. A series of welding experiments at various weld conditions were performed using an automatic GTAW orbital process on Inconel 625 alloy tubing. Simple analytical heat conduction and grain growth models were developed to predict weld temperature profiles and metallurgical transformations. Weld characterization included mechanical tests, optical microscopy, scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS) elemental analysis, and microhardness measurements. Weld microstructural characterization revealed that a characteristic dendritic structure was formed in the FZ, while the HAZ exhibited larger equiaxed grains than those found in the base material. SEM-EDS analysis showed no distinct alloying element segregation in both the HAZ and FZ. Welds produced with heat inputs of about 3.00 kJ/cm3 presented similar mechanical properties as those observed in the base material. In these welds, grain growth was homogenously minimized in the FZ. It is concluded that the effective welding heat input control can optimize the weld microstructure and the weld mechanical properties in Inconel 625 tubing used as Canadian SCWR reactor fuel cladding.


2012 ◽  
Vol 472-475 ◽  
pp. 2655-2658
Author(s):  
Xiao Dong Hu ◽  
Sen Zhang ◽  
Yong Zhang ◽  
Ya Jiang Li

The microstructure and the mechanical properties of welding joint with the material of TA2 have been studied in this paper with the specimens made with the method of argon-arc welding. The microhardness of the welding joint has been compared with the hardness in the same position of the weld joint after annealing. Conclusions have been obtained as follows: The organizations of the welding joint include base material, recrystallization zone, overheated area, fusion zone and the weld zone; the hardness tendency of the weld joint is depicted as M-shape with the softest point located at the center, and the hardest is located at the overheated zone; the annealing treatment can enhance the weld joint hardness mainly at the center, and the hardness of other zones change little.


2017 ◽  
Vol 97 ◽  
pp. 242-247 ◽  
Author(s):  
Xiaolong Cai ◽  
Daqian Sun ◽  
Hongmei Li ◽  
Hongling Guo ◽  
Xiaoyan Gu ◽  
...  

2005 ◽  
Vol 297-300 ◽  
pp. 2876-2882 ◽  
Author(s):  
Yong Hwan Kim ◽  
Il Ho Kim ◽  
C.S. Kim

This study investigated the microstructure and mechanical properties of a wide-gap region brazed with various process variables. The IN738 and DF 4B alloy powders were used as additive and filler metal powder for the brazing process. The wide-gap brazing process was carried out in a vacuum of 2×10-5 torr. The wide-gap region brazed with 60wt.% IN738 additive powder had a microstructure consisting of IN738 additive and (Cr, W)2B. The fracture strength of the wide-gap region (60 wt.% additive and 40 wt.% filler metal powder) brazed at 1230°C for 30hr was as high as 862MPa (93% of base material strength). It was observed that the brazing temperature was the main process variable affecting the mechanical properties of the wide-gap brazed region. The creep rupture life of the region brazed with 60wt.% additive and 40 wt.% was longer than that of other brazed samples. The Cracks in the wide-gap brazed region initiated at the (Cr, W)2B and propagated through them. It was found that the (Cr, W)2B and the pore in the brazed region are important microstructural factors affecting the mechanical properties of the wide-gap brazed region.


Sign in / Sign up

Export Citation Format

Share Document