Effect of Filler Metals on Microstructure and Mechanical Properties of GTAW Welded Joints of Aluminum Alloy (AA2024-T3)

2020 ◽  
Vol 38 (8A) ◽  
pp. 1236-1245
Author(s):  
Muna K. Abbass ◽  
Jihad G. Abd Ul-Qader

This study presents an appropriate filler metal or welding electrode to join aluminum alloy (AA2024-T3) sheet of 3.2 mm thickness with a square butt joint using Gas Tungsten Arc Welding (GTAW) process. This process was carried out at three different welding currents with three various filler metals: ER4047 (12% Si), ER4043 (5% Si), and ER5356 (5% Mg). Experiments were conducted to investigate the microstructure and the mechanical properties. The effect of various filler metals upon the weld joints quality were analyzed via an X-ray radiographic and tensile test. Hardness test, microstructures, SEM, and XRD also conducted to the welded specimens. It was found that the best result was at 100 Ampere with using filler metal (ER5356) which produced the highest strength of 240 MPa in comparison with welded joints with utilizing fillers (ER4043) and (ER4047) having values of 235 MPa and 225 MPa, correspondingly. The hardness results showed that the highest hardness values were at the weld metal for ER4047 and ER4043, then decreased to HAZ and increased in the base metal. While in the case of ER5356, the highest hardness was in HAZ and decreased in the weld metal. The fractography of the fracture surface of the welded joints after the tensile test was analyzed using SEM.

2015 ◽  
Vol 1128 ◽  
pp. 242-253
Author(s):  
Ioan Catalin Mon ◽  
Mircea Horia Tierean ◽  
Adel Nofal

The present research is dedicated to weldability of Austempered Ductile Iron (ADI) and Ductile Iron (DI) using Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) methods. The welds were done using the arc welding process with Nickel base filler materials: ENi-Cl and ENiFe-Cl-A. Each weldment was examined visually, with X-rays and mechanical tests. After the mechanical tests, tensile test and impact properties of the welded joint are lower than mechanical properties of the ADI base material using ENiFe-Cl-A filler metal and GTAW process. This type of filler metal ENiFe-Cl-A can be applied successfully only for repair by welding of ADI parts. Using ENi-Cl filler metal with GTAW process applied to DI, the mechanical tests, tensile test and hardness of the welded joint are greater than mechanical properties of the DI base material. This procedure can be applied for welding. In case on DI welded using SMAW with ENi-Cl electrodes, the hardness of the welded joint is lower than the hardness of base material. This procedure can be applied only for repair by welding.


2010 ◽  
Vol 146-147 ◽  
pp. 987-990
Author(s):  
Che Lah Nur Azida ◽  
Muhammad Faizol Ahmad Ibrahim ◽  
Azman Jalar ◽  
J. Sharif ◽  
Norinsan Kamil Othman ◽  
...  

The filler metal used during welding process is believed to play an important role on porosity formation in aluminium alloy welded. The present investigation is aimed to study the effect of different fillers ER4043 (Al-5%Si) and ER5356 (Al-5%Mg) on porosity formation of AA6061 alloy welded joints. Butt-joint welds were made on 6 mm thick plates using 21 – 22 V arc voltages by using Gas Metal Arc Welding process (GMAW). The hardness profile of each types of AA6061 welded joints for both fillers were characterized by the Vickers microhardness test. In order to study the formation and distribution of porosity, the images of analysis were obtained using the X- ray CT-Scan. It was observed that, more porosities were found in the alloy AA6061 using ER4043 compared to ER5356 filler metals with the percentage area value of porosity about 18.3 and 8.4%, respectively. The hardness profile of ER5356 and ER4043 welded materials exhibited the similar hardness pattern profile. It is proposed that Si and Mg contents in the filler metal could play significant role in the distribution of porosity. No significant effect was observed on the hardness profile for both filler metals of welded materials.


2010 ◽  
Vol 146-147 ◽  
pp. 1402-1405 ◽  
Author(s):  
Che Lah Nur Azida ◽  
Azman Jalar ◽  
Norinsan Kamil Othman ◽  
Nasrizal Mohd Rashdi ◽  
Md Zaukah Ibel

AA6061 Aluminum alloy welded joint using two different filler metals were studied by using X-ray CT-Scan. The filler metals ER 4043 and ER 5356 were used in this present work in order to investigate the effect of using different filler metals on the welded joint quality of AA 6061 aluminum alloy in welded zone microstructure. Gas metal arc welding (GMAW) technique and V grove butt joint with four layers and five passes welded joint were performed. From this investigation, it is found that AA6061 with ER 4043 showed less distribution of porosity compared to AA6061 with ER 5356 welded joint confirmed by X-ray Ct-Scan. The decreasing of porosities and presence of very fine grains in weld region area with ER 5356 compared to ER 4043 will be discussed in term of microstructure analysis.


2018 ◽  
Vol 18 (1) ◽  
pp. 37-47 ◽  
Author(s):  
K. Pańcikiewicz

AbstractGas Tungsten Arc butt welded joints of tubes of 7CrMoVTiB10-10 made using bainitic-martensitic P 24-IG filler metal were found to be susceptible to root cracking. This was avoided by using the CMS-IG filler metal and austenitic EPRI P87 filler metal. Detailed coefficient of thermal expansion analysis for both filler metals was performed. Unfortunately, CMS-IG filler metal is characterized by a lower creep rupture strength than P 24-IG. For this reason, the joints were produced by the 141 method with using two filler metals: P 24- IG and EPRI P87. All the welded joints was characterized by the B quality level. Macrostructural, microstructural and hardness data for both welded joints are presented. The standard requirement, < 350 HV10, was marginally not met and was achieved through post weld heat treatment.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
C K Krishnadasan ◽  
G Radhakrishnan ◽  
Manu Thomas

This work mainly focuses on designing a novel aluminum alloy 6061-T6 pressure vessel liner intended for use in launch vehicles. Fabrication of custom-made welding fixtures for the assembly of liner parts, namely two hemispherical domes and end boss, is illustrated. The parts of the liner are joined using the cold metal transfer welding process, and the welding trials are performed to arrive at an optimized parametric range. The metallurgical characterization of weld joint reveals the existence of dendritic structures (equiaxed and columnar). Microhardness of base and weld metal was 70 and 65 HV, respectively. The tensile strength of base and weld metal was 290 and 197 MPa, respectively, yielding a joint efficiency of 68%. Finite-element analysis of a uniaxial tensile test was performed to predict the tensile strength and location of the fracture in base and weld metal. The experimental and predicted tensile test results were found to be in good agreement.


2018 ◽  
Vol 941 ◽  
pp. 224-229
Author(s):  
Takahiro Izumi ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Hiroaki Miyanaga

Microstructures and mechanical properties of lap fillet welded joints of several high and ultra-high tensile strength steel by arc welding were investigated. Steel plates having tensile strength of 400 (SPH400W), 590 (SPC590Y, SPC590R), 980 (SPC980Y) and 1500 MPa (SAC1500HP) class with 2 mm thickness were prepared. Four types of joints were formed by MAG welding; SPH400W/SPH400W, SPC590Y/SPC590Y, SPC980Y/SPC980Y and SAC1500HP/SPC590R. In joints with SPC590Y, SPC980Y and SAC1500HP steel which matrixes are martensitic microstructures, the HAZ softens due to transformation of martensite into ferrite with precipitating cementite. By using high and ultra-high tensile strength steel, the weld metal is strengthened due to dilution of the matrix into the weld metal and thus tensile shear strength of the welded joint increases. In the fatigue test, similar S-N diagrams were obtained in the all welded joints investigated. It seems that the effect of stress concentration due to the shape of the welded joint on fatigue properties is larger than that of the strength of the matrix.


Sign in / Sign up

Export Citation Format

Share Document