β-PbO Plate Films Deposited on Cathode by Electrochemical Deposition

2010 ◽  
Vol 123-125 ◽  
pp. 1279-1282 ◽  
Author(s):  
Xue Ming Lü ◽  
Xiao Ping Zou ◽  
Jin Cheng ◽  
Peng Fei Ren ◽  
Xiang Min Meng ◽  
...  

In this paper, we developed a simple and effective method to fabricate lead oxide plate films by electrochemical deposition. The electrolyte was lead nitrate aqueous solution with or without Cl- ions. Stainless steel plate was employed as both cathode and substrate, and a graphite plate as anode. We found the optimal current density of synthesizing lead oxide plate films is 10-25mA/cm2 when there were no Cl- ions in the electrolyte. If equal Cl- ions were added in lead nitrate aqueous solution, the optimal current density of synthesizing lead oxide plate films is less than 10mA/cm2. The as-prepared lead oxide plate films have orthorhombic crystals structure.

2010 ◽  
Vol 123-125 ◽  
pp. 1243-1246
Author(s):  
Gang Qiang Yang ◽  
Xiao Ping Zou ◽  
Xiang Min Meng ◽  
Jin Cheng ◽  
Xue Ming Lü ◽  
...  

In this paper, a simple and controllable method to fabricate - and -PbO is reported. Lead nitrate as precursor was dissolved in 50ml distilled water, and was heated to 80oC. Sodium chloride was added into the lead nitrate aqueous solution. During the process, -PbO deposition will be obtained when we add lead nitrate solutions with KOH pellets without chloride anion. When we add lead nitrate solutions with KOH pellets with a little chloride anion, there will produce -PbO deposition. Our results indicate that the concentration of chloride anion and temperature of reaction solution affects the crystal morphologies and modifications of lead monoxide plate precipitates from lead nitrate solution and we can selectively and controllably produce - or -PbO by this way.


2010 ◽  
Vol 123-125 ◽  
pp. 659-662 ◽  
Author(s):  
Zhe Sun ◽  
Xiao Ping Zou ◽  
Jin Cheng ◽  
Xiang Min Meng ◽  
Cui Liu Wei ◽  
...  

In this paper, we report a simple method to fabricate lead oxide nanostructure by electrochemical deposition. In our experiment, the electrolyte was lead nitrate aqueous solution containing some drops of concentrated hydrochloric acid. ITO was employed as both cathode and substrate. The controlled current that was supplied by a direct current power supply passed through the electrolyte to deposit the PbO nanostructure on the surface of ITO at room temperature. The morphology of lead oxide was affected by the concentration of electrolyte. So the impact of the electrolyte concentration on the synthesis of PbO nanostructure was discussed. The as-synthesized products were characterized by scanning electron microscopy and X-ray diffraction. Our results indicate that different PbO nanostructure could be formatted with different electrolyte concentration at current densities in the range of 5-10mA/cm2.


1994 ◽  
Vol 59 (6) ◽  
pp. 1301-1304
Author(s):  
Jaroslav Nývlt ◽  
Stanislav Žáček

Lead iodide was precipitated by a procedure in which an aqueous solution of potassium iodide at a concentration of 0.03, 0.10 or 0.20 mol l-1 was stirred while an aqueous solution of lead nitrate at one-half concentration was added at a constant rate. The mean size of the PbI2 crystals was determined by evaluating the particle size distribution, which was measured sedimentometrically. The dependence of the mean crystal size on the duration of the experiment exhibited a minimum for any of the concentrations applied. The reason for this is discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Ferniza-García ◽  
Araceli Amaya-Chávez ◽  
Gabriela Roa-Morales ◽  
Carlos E. Barrera-Díaz

This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.


2013 ◽  
Vol 537 ◽  
pp. 256-260
Author(s):  
Cai Ge Gu ◽  
Qian Gang Fu ◽  
He Jun Li ◽  
Jin Hua Lu ◽  
Lei Lei Zhang

Bioactive calcium phosphate coatings were deposited on carbon/carbon(C/C) composites using electrochemical deposition technique. The effects of electrolyte concentration and constant current density on morphology, structure and composition of the coating were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results show that, the coating weight elevated gradually with the increase of electrolyte concentration, and the morphology of coatings changed from spherical particles to nanolamellar crystals with interlocking structure initially. Then the coating transformed into seaweed-like and nano/micro-sized crystals along the depth direction of the coating. The coatings showed seaweed-like morphology as the deposition current density was less than 20mA. With the less current density, the coating became more homogenous. However, the coating was fiakiness crysal, with needlike crystal stacked upside as the current density reached to 20mA/cm2. The coating weight was improved gradually when the current density increased from 2.5mA/cm2 to 10mA/cm2, then reduced with the increasing current density in the range of 10 to 20mA/cm2.


2019 ◽  
Vol 153 ◽  
pp. 588-602 ◽  
Author(s):  
H.X. Yuan ◽  
X.W. Chen ◽  
M. Theofanous ◽  
Y.W. Wu ◽  
T.Y. Cao ◽  
...  

2019 ◽  
Vol 84 (7) ◽  
pp. 713-727 ◽  
Author(s):  
Jiteng Wan ◽  
Chunji Jin ◽  
Banghai Liu ◽  
Zonglian She ◽  
Mengchun Gao ◽  
...  

Even in a trace amounts, the presence of antibiotics in aqueous solution is getting more and more attention. Accordingly, appropriate technologies are needed to efficiently remove these compounds from aqueous environments. In this study, we have examined the electrochemical oxidation (EO) of sulfamethoxazole (SMX) on a Co modified PbO2 electrode. The process of EO of SMX in aqueous solution followed the pseudo-first-order kinetics, and the removal efficiency of SMX reached the maximum value of 95.1 % within 60 min. The effects of major factors on SMX oxidation kinetics were studied in detail by single-factor experiments, namely current density (1?20 mA cm-2), solution pH value (2?10), initial concentration of SMX (10?500 mg L-1) and concentration of electrolytes (0.05?0.4 mol L-1). An artificial neural network (ANN) model was used to simulate this EO process. Based on the obtained model, particle swarm optimization (PSO) was used to optimize the operating parameters. The maximum removal efficiency of SMX was obtained at the optimized conditions (e.g., current density of 12.37 mA cm-2, initial pH value of 4.78, initial SMX concentration of 74.45 mg L-1, electrolyte concentration of 0.24 mol L-1 and electrolysis time of 51.49 min). The validation results indicated that this method can ideally be used to optimize the related parameters and predict the anticipated results with acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document