Study of Modeling and Distortion Predicting for Multi-Frame Components

2010 ◽  
Vol 136 ◽  
pp. 221-226
Author(s):  
Jie Chen

In this study, a method called “house-building frame modeling” based on the APDL language is introduced firstly, and the finite element model of the milling distortion analysis is established for a platform structure with 192 frames by the method, and the prediction analysis of the milling distortion under different milling conditions is carried out, by means of 3-D finite element simulation technology. Comparing the simulation results and the measurement ones of the milling distortion, the proposed model is modified; the modeling method and prediction method are proved to be effective.

2010 ◽  
Vol 426-427 ◽  
pp. 13-16
Author(s):  
H.B. Wu ◽  
Yuan Wei Liu

In this study, a method called “house-building frame modeling” based on the APDL language is introduced firstly, and the finite element model of the milling distortion analysis is established for a platform structure with 192 frames by the method, and the prediction analysis of the milling distortion under different milling conditions is carried out, by means of 3-D finite element simulation technology. Comparing the simulation results and the measurement ones of the milling distortion, the proposed model is modified; the modeling method and prediction method are proved to be effective.


Author(s):  
O. Sardan Sukas ◽  
J. Liu ◽  
P. Bo̸ggild

In this paper, we present the results of the temperature measurements performed on topology optimized polysilicon microgrippers using Raman spectroscopy. The results reveal that the temperature profile along the actuators is in correspondence with the finite element simulation results presented in [1] except an offset of ∼250 °C due to chip heating. In order to predict this behavior, we included a section of the carrier chip into the finite element model. We also fabricated new devices with wider electrodes to reduce the overall Joule heating. Both finite element simulations and experimental results show that the devices with a wider electrodes design lead to a temperature drop of ∼50 °C as compared to the devices with the previous electrode design.


2011 ◽  
Vol 94-96 ◽  
pp. 2080-2083
Author(s):  
Zhi Jian Li ◽  
Jian Kun Zhang

The finite element model of metal structure of 45 tons container stacker is established and Ansys software is employed to calculate the stress of key parts. The skill of model processing of the complete machine and the boundary condition of calculation model is described. The calculation results are used to guide the design of the container stacker.


2011 ◽  
Vol 94-96 ◽  
pp. 1818-1823
Author(s):  
Guang Sheng Bian ◽  
Qiang Jia ◽  
An Ying Chen ◽  
Fang Gu

There were four collapse accidents of fastener-style steel tubular formwork support being investigated in the article. The collapse mechanism was researched. According to the collapse accidents, the finite element model was established. The whole stability analysis was done. The analytical results were the same with the conditions of accidents. The collapse mechanism was verified. According to the collapse mechanism, the security technical measures of high formwork support were put forward.


2011 ◽  
Vol 199-200 ◽  
pp. 1273-1280
Author(s):  
Hong Wei Guo ◽  
Rong Qiang Liu ◽  
Zong Quan Deng

The dynamic equivalent continuum model of beamlike space deployable lattice truss which is repetition of the basic truss bay is established based on the energy equivalence. The finite element model of the lattice truss is also developed. Free vibration frequencies and mode shapes are calculated and simulated based on equivalent continuum model and discrete finite element model. The analytical solutions calculated by equivalent continuum model match well with the finite element model simulation results. A prototype of deployable lattice truss consist of 20 truss bays is manufactured. The dynamic response of lattice truss with different truss bays are tested by dynamic vibration experiment, and natural frequencies of lattice truss with different length are obtained from acceleration response curves. The experiment results are compared with simulation results which verifies that the correctness of finite element model, which also validate the effectiveness of equivalent continuum model indirectly.


2013 ◽  
Vol 416-417 ◽  
pp. 1803-1807
Author(s):  
Qiang Li ◽  
Yan Fang Liu ◽  
Xiang Yang Xu

This paper introduces a combination of testing and finite element simulation for the abnormal vibration of a truck cab in specific speed. Vibration characteristics of the truck is tested. The factors that caused the abnormal vibration of the truck is found. The finite element model is established and the modal analysis is performed, the correctness of the test results is verified, and a reliable finite element model for the follow-up solution is provided. The abnormal vibration was caused by the frequencies of radial force variation which almost equal to the truck natural frequency under the vehicle velocities of 50km/h. The approach described in this paper can be applied to similar vibration problem diagnosis.


2009 ◽  
Vol 416 ◽  
pp. 568-571
Author(s):  
You Yi Zheng ◽  
Ai Hua Gao

Based on several assumptions, this paper established the finite element model of the heat coupling of the orthogonal metal cutting, and analyzes the key technology that involved in the Orthogonal cutting finite element simulation.


2011 ◽  
Vol 255-260 ◽  
pp. 4150-4154
Author(s):  
Chen Chen Chen ◽  
Mu Xi Lei ◽  
Zheng Bao Lei ◽  
Yong Han Li ◽  
Xin Chao Zhang ◽  
...  

In order to research and develop a suitable wire rope safety barrier for our country, which will be used as the highway flexible safety barrier for two model demonstrative project of science and technology of Changsha-Xiangtan Highway, the paper presents a new type of wire rope safety barrier, by way of designing the shape of the post, the diameter of the rope, the arrangement and the number of ropes etc., on the basis of the form of structure of the most advanced foreign existing wire rope safety barrier — BRIFEN. The first part is devoted to prove the reliability of the finite element simulation, by comparing the simulation results of the finite element model of BRIFEN with the collision test data, which is published by U.S. Federal Highway Administration. After discussion and analysis, the neotype wire rope safety barrier, which has many posts with C-shaped cross section and 5 ropes, is invented with the post equivalent method. The finite element model of the neotype barrier is established and simulated to determine the dimension of the post. The simulation results achieve the design objective that the maximum dynamic deformation is less than 1.2m when the barrier is impacted by the 10 tons of bus in the speed of 60 kilometers per hour, and provide an important reference for Vehicle Crash Test.


2010 ◽  
Vol 426-427 ◽  
pp. 701-704
Author(s):  
Y. Zhao ◽  
Feng Xu ◽  
Dun Wen Zuo ◽  
Jing Kang

In this paper, by adopting an equivalent geometry model of the cutting layer, a three-dimensional (3D) finite element model was built to investigate the milling of Ti-6Al-4V. The chip separating process was simulated by Arbitrary Lagrangian-Eulerian (ALE) method and automatic re-meshing technology. The experiments of milling Ti-6Al-4V were carried out to verify finite element model of milling process. The comparisons of the predicted cutting forces and the measured forces showed reasonable agreement. Finally, the finite element model was used to predict the chip deformation and the three-dimensional distribution of cutting force, stress and temperature in milling Ti-6Al-4V.


2013 ◽  
Vol 567 ◽  
pp. 73-79
Author(s):  
Hun Guo ◽  
Dun Wen Zuo ◽  
Guo Xing Tang ◽  
J. Xu

Because the multi-frame component has thin walls, variable wall thickness and a high reconciliation precision request, the design restrains are many, and the variable is big, the manufacture restrains must be considered in the design stage. In this study, a method called “house-building frame modeling” is introduced firstly, and the finite element model of the milling distortion analysis is established for the multi-frame components by the method, and the prediction analysis of the milling distortion under different milling conditions is carried out, by means of 3-D finite element simulation technology. Comparing the simulation results and the measurement ones of the milling distortion, the proposed model is modified; the modeling method and prediction method are proved to be effective. Software system is developed specially for the modeling and the distortion prediction for multi-frame part. By using of the software, a platform structure with 192 frames is analyzed and its milling distortion is predicted successfully. reference on the purpose of optimizing milling coefficient.


Sign in / Sign up

Export Citation Format

Share Document