Continuum Damage Model for Biodegradable Magnesium Alloy Stent

2010 ◽  
Vol 138 ◽  
pp. 85-91 ◽  
Author(s):  
Dario Gastaldi ◽  
Valentina Sassi ◽  
Lorenza Petrini ◽  
Maurizio Vedani ◽  
Stefano P. Trasatti ◽  
...  

The main drawback of conventional stenting procedure is the high risk of restenosis. The idea of a stent that "disappears" after having fulfilled its mission is very intriguing and fascinating. The stent mass should diminishing in time to allow the gradual transmission of the mechanical load to the surrounding tissues. Magnesium and its alloys seem to be among the most appealing materials to design biodegradable stents. The objective of this work is to develop, in a finite element (FE) framework, a model of magnesium degradation able to predict the corrosion rate and thus providing a valuable tool to design biodegradable stents. Continuum damage approach is suitable for modelling different damage mechanisms, including several types of corrosion. Corrosion is modelled by a scalar damage field which accounts for the material strength loss due to geometrical discontinuities. As damage progresses, the material stiffness decreases. Corrosion damage results as the superposition of stress corrosion process and uniform corrosion. The former describes the stress-mediated localization of the corrosion attack through a stress-dependent evolution law similar to the one used in analytical models, while the latter affects the free surface of the material exposed to an aggressive environment. The effects of both phenomena described are modelled through a linear composition of the two specific damage evolution laws. The model, developed in a FE framework, manages the mesh dependency, typical of strain-softening behaviour, including the FE characteristic length in the damage evolution law definition. The developed model is able to reproduce the behaviour of different magnesium alloys subjected to static and slow-strain-rate corrosion tests. Moreover, 3D stenting procedures accounting for the interaction with the arterial vessel are simulated.

Author(s):  
Elena Benvenuti ◽  
Nicola Orlando

AbstractWe propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.


2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.


2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


2018 ◽  
Vol 878 ◽  
pp. 23-27 ◽  
Author(s):  
Ming Qiang Lin ◽  
Feng Juan Dai ◽  
Jia Tao Li

The corrosion of concrete structures is serious in sulfuric acid environments. Corrosion damage of reinforcements caused sulfuric acid corrosion is very serious. The rapid experiments of sulfuric acid corrosion steel bars were carried out, and the apparent morphology and mechanical properties of sulfuric acid corrosion steel bars were studied. The results show that the corrosion of steel bars is uniform corrosion. With the increase of corrosion rate, the yield platforms and the yield strengths and ultimate strengths are reduced. Based on the experimental datas, the relationship models between yield strengths and ultimate strengths and corrosion rates were obtained. The constitutive models of corrosion steel bars were established. The stress - strain relationship model is in good agreement with the experimental data.


Author(s):  
S. Peravali ◽  
T. H. Hyde ◽  
K. A. Cliffe ◽  
S. B. Leen

Past studies from creep tests on uniaxial specimens and Bridgman notch specimens, for a P91 weld metal, showed that anisotropic behaviour (more specifically transverse isotropy) occurs in the weld metal, both in terms of creep (steady-state) strain rate behaviour and rupture times (viz. damage evolution). This paper describes the development of a finite element (FE) continuum damage mechanics methodology to deal with anisotropic creep and anisotropic damage for weld metal. The method employs a second order damage tensor following the work of Murakami and Ohno [1] along with a novel rupture stress approach to define the evolution of this tensor, taking advantage of the transverse isotropic nature of the weld metal, to achieve a reduction in the number of material constants required from test data (and hence tests) to define the damage evolution. Hill’s anisotropy potential theory is employed to model the secondary creep. The theoretical model is implemented in a material behaviour subroutine within the general-purpose, non-linear FE code ABAQUS [2]. The validation of the implementation against established isotropic continuum damage mechanics solutions for the isotropic case is described. A procedure for calibrating the multiaxial damage constants from notched bar test data is described for multiaxial implementations. Also described is a study on the effect of uniaxial specimen orientation on anisotropic damage evolution.


2019 ◽  
Vol 37 (5) ◽  
pp. 419-439 ◽  
Author(s):  
Siavash Jafarzadeh ◽  
Ziguang Chen ◽  
Florin Bobaru

AbstractPitting corrosion damage is a major problem affecting material strength and may result in difficult to predict catastrophic failure of metallic material systems and structures. Computational models have been developed to study and predict the evolution of pitting corrosion with the goal of, in conjunction with experiments, providing insight into pitting processes and their consequences in terms of material reliability. This paper presents a critical review of the computational models for pitting corrosion. Based on the anodic reaction (dissolution) kinetics at the corrosion front, transport kinetics of ions in the electrolyte inside the pits, and time evolution of the damage (pit growth), these models can be classified into two categories: (1) non-autonomous models that solve a classical transport equation and, separately, solve for the evolution of the pit boundary; and (2) autonomous models like cellular automata, peridynamics, and phase-field models which address the transport, dissolution, and autonomous pit growth in a unified framework. We compare these models with one another and comment on the advantages and disadvantages of each of them. We especially focus on peridynamic and phase-filed models of pitting corrosion. We conclude the paper with a discussion of open areas for future developments.


2014 ◽  
Vol 580-583 ◽  
pp. 2092-2095
Author(s):  
Jing Li ◽  
Qiang Xu ◽  
Jian Yun Chen ◽  
Guo Shuai Lu

It is possible for hydraulic engineering located in high intensity earthquake area under the action of extreme disaster induced by earthquake and secondary slide surge. Several impact action models of slide surge were introduced and the damage evolution of concrete gravity dam subjected to combined action of different sequences of earthquake and secondary slide surge were studied based on nonlinear numerical analysis. The effects of different time sequences of combined earthquake and slide surge were compared and the safety performance analysis was performed. The results show that the combined form has great effects on the damage evolution law of concrete gravity dam.


Sign in / Sign up

Export Citation Format

Share Document