Study of Hot Compression Behavior of ZK60 Magnesium Alloy at Elevated Temperature

2010 ◽  
Vol 154-155 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Bin He ◽  
Qing Lin Pan ◽  
Xiao Yan Liu ◽  
Wen Bin Li

The hot compression behavior of ZK60 magnesium alloy was investigated at the temperatures from 523 to 673K and strain rates from 0.001 to 1s-1 on Gleeble-1500 thermal simulator. The results show that flow stress of ZK60 magnesium alloy decreases with the increase of deformation temperature and the decrease of strain rate. The flow stress curves obtained from experiments can be described in four different stages, i.e., work hardening stage, transition stage, softening stage and steady stage. For higher temperature and lower strain rate, the transition and softening stage are less obvious. The onset of dynamic recrystallization (DRX) occurred before the stress peak in true stress-true strain curves. The critical stress characterizing the onset of DRX rises with the increase of strain rate and/or the decrease of deformation temperature. The constitutive equation of ZK60 magnesium alloy during hot compression was constructed allowing for the effect of true strain on materials constants. The predicted stress-strain curves according to the constitutive equation are in good agreement with experimental results.

2014 ◽  
Vol 1015 ◽  
pp. 203-206
Author(s):  
Quan Li ◽  
Jin Yang ◽  
Wen Jun Liu ◽  
Su Qin Luo ◽  
Ren Ju Cheng ◽  
...  

Hot compression tests of AZ61 magnesium alloy were performed on gleeble1500D at strain rate ranged in 0.01~1s-1 and deformation temperature 350~400°C.The results show that the flow stress and microstructures strongly depend on the deformation temperature and the strain rate. When the temperature was reduced and the strain rate was enhanced, the area after dynamic recrystallization was enhanced, and the average dynamically recrystallied grain size reduce. But the dynamically recrystallied grain size was not well-proportioned. In this paper the 350°C×1s-1 was suggested.


2013 ◽  
Vol 800 ◽  
pp. 271-275 ◽  
Author(s):  
Feng Zhang Ren ◽  
Jun Tao Zhang ◽  
Qiu Ran Gao ◽  
Yao Min Zhu ◽  
Juan Hua Su

The hot deformation behavior of Mg-3.5Zn-0.6Y-0.5Zr alloy was investigated by compressive tests of strain rate ranges of 0.002~1 s-1and deformation temperature ranges of 300~450 °C using a Gleeble 1500D thermal simulator. The flow stresses in different deformation conditions are measured. The results show that flow stress is significantly affected by both deformation temperature and strain rate, the flow stress increases with increase in strain rate and decreases in deformation temperature during the hot compression process. The constitutive equation established on the basis of data of activation energy and stress exponent is a hyperbolic sine function.


Author(s):  
Li Ju ◽  
Yongtang Li ◽  
Jianhua Fu ◽  
Bufang Lei ◽  
Huiping Qi

Nowadays, modern casting theories and technologies have got marked progress in reducing steel casting’s defects, such as shrinkages, cracks, porosities, and segregations, which make it possible to manufacture industrial parts with casting instead of forging billet. Compared with the traditional technology, the new method will have many obvious advantages in reducing heating times and discharge, saving materials and energy, and improving productivity. In order to produce parts with sound mechanical properties by employing the new technology, it is important to probe the flow behavior of as-cast carbon steel under hot deformation for premium controlling processing parameters, reasonable planning procedures and a reliable constitutive equation for precise simulation. In this paper, high temperature flow behavior of as-cast 1026 carbon steel is investigated by conducting hot compression experiments on Gleeble-3500 simulator in the temperature range from 1 173 K to 1 473 K at an interval of 100 K and the stain rate range from 0.1 s−1 to 2.0 s−1. The relationships of deformation parameters (temperature, strain rate) with material’s flow behavior are found. The deformation activation energy and the stress index are worked out and the mathematical model of the flow stress under hot deformation is established by means of the liner regression analysis of true stress-strain data. Meanwhile, the effect of initial grain sizes on flow behavior of as-cast 1026 steel is also studied by compressing samples cooled to 1 173 K from 1 273 K, 1 373 K and 1 473 K respectively. The experimental results reveal that strain hardening and flow softening mainly characterize the flow behavior. It is also found that with the increase of deformation, the flow stress first increases rapidly, then reaches the peak slowly, after that it begins to decrease and finally comes to a steady value. At the temperature of 1 173 K, material’s softening is not apparent even if the strain rate is increased, while at the strain rate of 2 s−1, it is also not apparent even when the deformation temperature is raised to 1 473 K, so the final forging temperature is supposed to be about 1 173 K and the maximum stain rates should be below 2 s−1. In addition, at the same deformation temperature and strain rate, the more refined initial grain, the easier material dynamically recrystallizes and the lower the steady stress is. Therefore, the heating process of material is expected to be tightly controlled. The maximum error of flow stress between the model predictions and actual results is only 5.90%. The good agreement signifies the applicability of this method as a general constitutive equation in hot deformation studies.


2012 ◽  
Vol 184-185 ◽  
pp. 914-919 ◽  
Author(s):  
Yue Sheng Chai ◽  
Yong Zhe Chen ◽  
Wen Feng Liu ◽  
Gang Sun

Hot compression tests of AZ91D magnesium alloy were performed on Gleeble1500 ranging from 0.001 to 1 s-1 and deformation temperature ranging from 200 to 400°C. The results show that flow stress is dependent on deformation temperature and strain rates.When strain rate is a constant, flow stress decreases with the increasing deformation temperature. Meanwhile, as deformation temperature is a constant, flow stress increases with the increase of strain rate, which can be demonstrated by a Zener-hollomon parameter in the hyperbolic-sine-type equation during hot compression deformation. The hot deformation activation energy is 176.01kJ/mol and the stress exponent is 7.85 during hot compression deformation of AZ91D magnesium alloy.


2021 ◽  
Vol 1035 ◽  
pp. 189-197
Author(s):  
Bao Ying Li ◽  
Bao Hong Zhu

The hot deformation behavior of spray-formed AlSn20Cu alloy during hot compression deformation was studied, and the constitutive equation of AlSn20Cu alloy was established. The samples of spray-formed AlSn20Cu alloy were compressed on Gleeble-3500 thermal simulation test machine. The error of the true stress caused by adiabatic heating effect in the experiment was corrected. The constitutive equation of spray-formed AlSn20Cu alloy could be represented by Zener-Hollomon parameter in a hyperbolic sine function. The results showed that the deformation temperatures and strain rates had a notable effect on the true stress of the alloy. At the identical deformation temperature, the true stress increased with the increase of strain rate. When the strain rate was constant, the stress decreased with the increase of deformation temperature. After hot compression deformation, the tin phase was elongated along the direction perpendicular to the compression axis with short strips and blocks. With the increase of deformation temperature and the decrease of strain rate, Sn phase distribution became more homogeneous.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2007 ◽  
Vol 539-543 ◽  
pp. 3661-3666 ◽  
Author(s):  
A. Colin ◽  
Christophe Desrayaud ◽  
Marie Mineur ◽  
Frank Montheillet

The aim of this work is to study the flow instabilities occurring during hot forging of titanium alloy blades. In this view, the viscoplastic deformation behaviour of Ti-6Al-4V alloy is investigated by means of torsion tests under isothermal hot working conditions at temperatures ranging from 800 to 1020 °C and strain rates of 0.01, 0.1 and 1s−1. The thermomechanical processing is performed up to a true strain of 10. The flow stress data are analysed in terms of strain rate and temperature sensitivities. A constitutive equation that relates not only the dependence of the flow stress on strain, strain rate and temperature, but also for the fraction of each phase α and β is proposed. Two mechanical models are compared : the uniform strain rate model (Taylor) and the uniform plastic energy model (IsoW). The usual strain rate sensitivity and activation energy values of Ti-6Al-4V alloy are obtained by fitting the experimental data. Furthermore, specific values of strain rate sensitivities and activation energies are calculated for the α and β phases providing thus a constitutive law based on the physics of the α / β phase diagram. The flow stress is then related to strain by an empirical equation taking into account the flow softening observed after a true strain of 0.5 and the steady state flow reached after a true strain of 4. Comparison of the calculated and measured flow stresses shows that the constitutive equation predicts the experimental results with a reasonable accuracy. The above constitutive equation is then used for simulating forging processes by the finite element method. The calculations exhibit the localisation of deformation produced by shearing effects in the form of the classical X shape.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1602
Author(s):  
Sheng Xu ◽  
Xuedao Shu ◽  
Shuxin Li ◽  
Ji Chen

The warm deformation behavior of 20CrMoA steel at the temperature of 873–1123 K and the strain rate of 0.01−10 s−1 was investigated to obtain its processing property and optimum processing parameters. The true stress-true strain curves showed that flow stress reaches the peak rapidly, followed by slow decrease till reaching a steady state. This suggests a flow softening of dynamic recovery. The stress dropped with increasing deformation temperature and decreasing strain rate. The reduction became more distinct at lower temperature and higher strain rate due to flow softening caused by deformation heat. In the temperature range of 873–973 K, the deformation of 20CrMoA steel was more sensitive to temperature, and the average decline rate of steady stress was 6.9 times larger than that in the temperature range of 1023–1123 K. After modifying the stress curves, a constitutive model was developed for different deformation temperature ranges based on modified curves. The model was in good agreement with the experimental results.


2012 ◽  
Vol 538-541 ◽  
pp. 1687-1692
Author(s):  
Ji Xiang Zhang ◽  
Wei Feng ◽  
Hui Wen ◽  
Guo Yin An

The flow stress behavior of 6016 aluminum alloy was investigated on the condition of temperature range from 420°C to 540°C and strain rate range from 0.001s-1to 1s-1based on hot compression experiment on Gleeble-1500 thermal simulation machine. The result shows that the flow stress of 6016 aluminum alloy decreases with the enhancement of temperature and increases with the increase of strain rate. Especially, the flow stress increases tendency becomes obvious when the strain rate greater than 0.1s-1. Based on the results above, a constitutive equation for flow stress of 6016 aluminum alloy when the temperature is above 420°C is obtained by linear regression.


2011 ◽  
Vol 117-119 ◽  
pp. 1689-1692
Author(s):  
Fu Xiao Chen ◽  
Xiang Zhen Chen ◽  
Fu Tao Sun

To study the superplasticity of AZ31B magnesium alloy, hot compression tests were performed in forming temperature range from 280°C to 440°C and strain rate range from 0.001s-1 to 0.1s-1. The influence of deformation strain rate and forming temperature on flow stress was also analyzed detailed. It was shown that the flow stress of AZ31B was very sensitive to formpng temperature and stain rate, and was decreased with deformation temperature increasing, and was increased with stain rate increasing. However, no significant change of flow stress was observed at the temperature of 440°C and the strain rate below 0.01s-1. The activation energy of AZ31B in superplastic deformation was 141.6KJ•mol-1 and its constitutive equation was established also.


Sign in / Sign up

Export Citation Format

Share Document