scholarly journals Seismic Evaluation of New Steel Infill Panels for Steel Shear Walls

2021 ◽  
Vol 7 (4) ◽  
pp. 633-648
Author(s):  
Ali Joharchi ◽  
Siti Aminah Osman ◽  
Mohd Yazmil Md Yatim ◽  
Mohammad Ansari

Corrugated Steel Shear Wall (CSSW) is an efficient shear wall system, which has higher energy dissipation capacity, ductility and stiffness when compared to the Steel Plate Shear Wall (SPSW) with flat infill plate. Despite of these advantages, the ultimate load of CSSW is lower than that of SPSW. Various studies conducted to improve the cyclic behavior of CSSW revealed that increasing corrugation angle might enhance energy dissipation capacity and toughness of CSSWs. However, the ultimate load of CSSW was not improved by increasing the corrugation angle. Thus, the current study proposed new corrugated infill panel schemes to improve the ultimate load of CSSWs. To this end, Finite Element (FE) models were established using ABAQUS/Standard and verified with the experimental results from previous researches. The corrugation angle of the proposed plates was found based on a numerical investigation on seven CSSW FE models with the corrugation angle ranges from 30° to 120°. The FE results revealed that the model with the corrugation angle of 120 achieved highest ultimate load, energy dissipation capacity and toughness amongst the CSSW models. In addition, the ultimate loads, energy dissipation capacities and toughness of the proposed infill plates were up to 11.8%, 53.9% and 8.8% respectively higher than those of CSSW model with the corrugation angle of 120°. Furthermore, the proposed infill plates use up to 13.4% lower amount of steel compared to the corrugated plate with the corrugation angle of 120. Doi: 10.28991/cej-2021-03091678 Full Text: PDF

2010 ◽  
Vol 163-167 ◽  
pp. 205-210
Author(s):  
Hong Chao Guo ◽  
Ji Ping Hao ◽  
Feng Li

Based on the experiment of a one-third scale, single-span, two-storey semi-rigid composite steel frame model with cross-stiffened steel plate shear wall under lateral cyclic loadings, the interactive effect between the joint stiffness and the cross-stiffened steel plate shear wall, the failure mode and energy dissipation mechanism of the structure system were analyzed, some important parameters were obtained in regard to load-carrying capacity, ductility, stiffness and energy dissipation capacity. The results showed that the specimen exhibited excellent ductility, energy dissipation capacity and great safety margin; the stiffness degradation of the joints was not serious, the requirement of ductility was lowered by setting up infill panels, the cooperative work between the frame and the steel plate shear wall was well; stiffeners improved the force condition of steel panels, increased the stiffness and load-carrying capacity of panels, lightened the pinch of hysteretic loops and reduced the noise and tremor of panels. The failure mode of the structure induced by buckling of stiffeners, local buckling and interactive buckling of infill panels,plastic hinges were formed at the bottom of column and semi-rigid connection, the in-plane deformation of specimen was bending failure. The research provides a basis for engineering application and theoretical analysis of the structural system.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


1999 ◽  
Vol 26 (5) ◽  
pp. 549-563 ◽  
Author(s):  
A Schumacher ◽  
G Y Grondin ◽  
G L Kulak

The behaviour under cyclic loading of unstiffened steel plate shear wall panels at their connection to the bounding beams and columns was investigated on full-size panel corner details. Four different infill panel connection details were tested to examine and compare their response to quasi-static cyclic loading. The load versus displacement response of the details showed gradual and stable deterioration at higher loads. The formation of tears in the connection details did not result in a loss of load-carrying capacity. In addition to the experimental program, a finite element model was developed to model the behaviour of one of the infill plate corner connection specimens. Results from the analysis showed that the finite element method can be used to obtain the load versus displacement behaviour of an infill panel-to-boundary member arrangement.Key words: cyclic loading, hysteresis, shear wall, steel, welded connection.


2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


2018 ◽  
Vol 763 ◽  
pp. 743-750 ◽  
Author(s):  
Eduardo Totter ◽  
Antonio Formisano ◽  
Federico M. Mazzolani ◽  
Francisco Crisafulli

Unstiffened Steel Plate Shear Walls (SPSWs) are very effective structural systems designed to resist lateral forces. SPSW systems consist of thin web plates infilled within frames of steel horizontal and vertical boundary elements. The thin unstiffened web plates are expected to buckle in shear and to develop diagonal tension field after buckling under the action of horizontal loads. For unstiffened steel plates, buckling in shear occurs in the elastic range at low stress levels. This behaviour provides strength, stiffness and ductility and allows to have an appropriate level of energy dissipation through tension yielding of the web plates. This paper assesses the inelastic structural response and behaviour of Steel Plate Shear Wall systems using both a modified strip model approach and a new simplified strip model for only beam connected SPSWs. Both models are developed with plasticity concentrated elements and the performed analyses include the nonlinear behaviour of strips, also considering the compressive forces effects over the strip model elements. This research indicates fundamental aspects of the seismic performance of Steel Plate Shear Wall systems, such as energy dissipation capacity, panel ductility demand, seismic inter-story drift and design load demands in Vertical Boundary Elements (VBE) and Horizontal Boundary Elements (HBE) of the frame. The results obtained from the use of these models are compared with selected experimental and numerical results to enrich the research conclusions.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Bi Ying

In the recent five decades, steel shear walls have been one of the most important systems in the construction and rehabilitation of many structures. The system has many advantages including high strength and stiffness, high ductility and excellent energy dissipation capacity. Steel shear walls are made and executed in different types. These include walls with and without stiffeners as well as composites. Recent research shows that they are a type of steel shear wall in which the infill plate is slightly away from the boundary members. In fact, there is no connection between the infill plate and one of boundary members. Therefore, in this study, the behavior of traditional one-story-one-span steel shear walls with 4 different lengths was investigated. For comparison, walls in which the sheet was attached only to a beam or column were examined. Obtained results from the study showed that the lateral bearing capacity of samples with free beam or free column is less than that of samples with full connection, on average 20%. Also, the strength of the samples with free column is slightly higher than the samples with free beam. In addition, boundary members, especially columns, are much less affected by forces in free-column specimens than in other specimens, and this could decreases economical costs.


2021 ◽  
Author(s):  
Osman Shallan ◽  
Hassan M. Maaly ◽  
Mohammed M. Elgiar ◽  
Alaa El-Din Elsisi

Abstract Currently, the steel plate shear wall (SPSW) is commonly used in high-rise steel buildings as a lateral load resisting system. The SPSW consists of the boundary frame and infill plate. The objectives of this work are to study the effect of same weight different infill plate types, the effect of boundary frame characteristics, and the effect of infill plate weld separation on the seismic behavior of the SPSWs. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of different types of SPSWs, having the same weight. The model was validated by using previously published numerical and experimental works. The study covers unstiffened (USPSW), stiffened (SSPSW), and corrugated steel plate shear wall (CSPSW). Similarly, the effect of boundary frame stiffness and welding separation characteristics between the plate and boundary frame will be studied, and key issues, such as load-carrying capacity, stiffness, and energy-dissipation capacity were discussed deeply. It was found that the SSPSW has better seismic behavior than USPSW and CSPSW. SSPSW has a higher load-carrying capacity than USPSW, and CSPSW by about 14, 24%, respectively. USPSW is more sensitive to the stiffness of the boundary frame than CSPSW. The plate welding separation has a greater impact on the initial stiffness than load-carrying capacity. When plate-column welding separation occurs, the initial stiffness, and the energy dissipation capacity reduces by about 21%, and 14%. Whereas, when the plate-beam separation occurs, the initial stiffness and energy dissipation capacity reduce by about 36%, and 20.5%.


1999 ◽  
Vol 15 (1) ◽  
pp. 67-86 ◽  
Author(s):  
David W. Dinehart ◽  
Harry W. Shenton ◽  
Timothy E. Elliott

Results are presented of an experimental investigation, the objectives of which were to evaluate and compare the performance of conventional plywood shear walls with walls that include viscoelastic (VE) dampers. Cyclic tests were conducted on conventional walls and walls with VE dampers; five different damper configurations were tested. The walls with the VE dampers showed an increase in the total energy dissipation and an increase in the effective stiffness, relative to the conventional wall, with increases in energy dissipation as high as 59 percent. Tests demonstrated that the sheathing-to-stud and corner dampers can easily be installed within the confines of the wall and can be utilized without impacting the design, construction, or finishing of the shear wall. The results demonstrate that addition of the viscoelastic dampers significantly enhanced the dynamic performance of the walls by increasing the energy dissipation capacity and providing a constant source of energy dissipation.


Sign in / Sign up

Export Citation Format

Share Document